English, asked by TheRadhaKrishna, 7 months ago

Determine the acceleration of the masses w.r.t. lift and tension in the string if the whole system in moving vertically upwards with uniform acceleration a0​. (m1​>m2​)

Answers

Answered by tripathishivansh12
2

Answer:

let the tension be T

 m1(g+a0)−T=m1a 

T−m2(g+a0)=m2a

add both the equation , 

(m1−m2)(g+a0)=a(m1+m2) 

a=(m1+m2)(m1−m2)(g+a0)

 acceleration of the blocks wrt the lift.

 T+(m1+m2)m2(m1−m2)(g+a0)+m2(g+a0) tension in the string.

mark me as brainlist

Attachments:
Answered by Qᴜɪɴɴ
25

Given:

  • The lift has acceleration = ao

  • The Masses are m1 and m2

  • m1 > m2

━━━━━━━━━━━━━━━━

Need to Find:

  • The acceleration of masses=?

  • Tension in string =?

━━━━━━━━━━━━━━━━

Solution:

Let,

  • The Tension be T
  •  The acceleration of the blocks be a

Apply PseudoForce on the blocks 

The Pseudo Force:

=Mass of the body× Acceleration of the non-inertial frame

Now writing the equations of all the forces acting on the block m1 we get,

\bold{\boxed{\purple{m_{1}g+m_{1}{a}_{0}-T={m}_{1}a-----i}}}

Equation of all forces acting on block m2 is:

\bold{\boxed{\purple{T-{m}_{2}(g+{a}_{o})={m}_{2}a-----ii}}}

Adding the equation i and ii we get,

 ({m}_{1}-{m}_{2})(g+{a}_{o})=a({m}_{1}+{m}_{2}) 

\red{\bold{\boxed{\large{a = \dfrac{({m}_{1} - {m}_{2})(g + {a}_{o})}{{m}_{1} + {m}_{2}}}}}}

━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━

Substitute the value of acceleration in equation 2, then we'll get,

T= 2a+{m}_{2}{a}_{o}+{m}_{2}g

\implies T= {m}_{2} \times \dfrac{({m}_{1} - {m}_{2})(g + Ao)}{{m}_{1} + {m}_{2}} + {m}_{2}({a}_{o}+ g)

\red{\bold{\boxed{\large{T= \dfrac{2{m}_{1}{m}_{2}(g + {a}_{o})}{{m}_{1} + {m}_{2}}}}}}

Attachments:
Similar questions