Math, asked by Anonymous, 11 months ago

Determine the antiderivative F of “f” , which is defined by f (x) = 4x3 – 6, where F (0) = 3​

Answers

Answered by Anonymous
3

Step-by-step explanation:

ɢⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ: ᶠ (ˣ) = 4ˣ3 – 6

ɴᵒʷ, ⁱⁿᵗᵉᵍʳᵃᵗᵉ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ:

∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ

∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ

ᴛʰᵘˢ, ᵗʰᵉ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᵒᶠ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ғ ⁱˢ ˣ4 – 6ˣ + ᴄ, ʷʰᵉʳᵉ ᴄ ⁱˢ ᵃ ᶜᵒⁿˢᵗᵃⁿᵗ

ᴀˡˢᵒ, ᵍⁱᵛᵉⁿ ᵗʰᵃᵗ, ғ(0) = 3,

ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ˣ = 0 ⁱⁿ ᵗʰᵉ ᵒᵇᵗᵃⁱⁿᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ʷᵉ ᵍᵉᵗ:

(0)4 – 6(0) + ᴄ = 3

ᴛʰᵉʳᵉᶠᵒʳᵉ, ᴄ = 3.

ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ᴄ = 3 ⁱⁿ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ

ʜᵉⁿᶜᵉ, ᵗʰᵉ ʳᵉᵠᵘⁱʳᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ˣ4 – 6ˣ + 3

ʜᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️

Answered by SwaggerGabru
2

Answer:

Step-by-step explanation:

Given function: f (x) = 4x3 – 6

Now, integrate the function:

∫4x3 – 6 = 4(x4/4)-6x + C

∫4x3 – 6 = x4 – 6x + C

Thus, the antiderivative of the function, F is x4 – 6x + C, where C is a constant

Also, given that, F(0) = 3,

Now, substitute x = 0 in the obtained antiderivative function, we get:

(0)4 – 6(0) + C = 3

Therefore, C = 3.

Now, substitute C = 3 in antiderivative function

Hence, the required antiderivative function is x4 – 6x + 3

Similar questions