Determine the antiderivative F of “f” , which is defined by f (x) = 4x3 – 6, where F (0) = 3
Answers
Step-by-step explanation:
ɢⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ: ᶠ (ˣ) = 4ˣ3 – 6
ɴᵒʷ, ⁱⁿᵗᵉᵍʳᵃᵗᵉ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ:
∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ
∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ
ᴛʰᵘˢ, ᵗʰᵉ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᵒᶠ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ғ ⁱˢ ˣ4 – 6ˣ + ᴄ, ʷʰᵉʳᵉ ᴄ ⁱˢ ᵃ ᶜᵒⁿˢᵗᵃⁿᵗ
ᴀˡˢᵒ, ᵍⁱᵛᵉⁿ ᵗʰᵃᵗ, ғ(0) = 3,
ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ˣ = 0 ⁱⁿ ᵗʰᵉ ᵒᵇᵗᵃⁱⁿᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ʷᵉ ᵍᵉᵗ:
(0)4 – 6(0) + ᴄ = 3
ᴛʰᵉʳᵉᶠᵒʳᵉ, ᴄ = 3.
ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ᴄ = 3 ⁱⁿ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ
ʜᵉⁿᶜᵉ, ᵗʰᵉ ʳᵉᵠᵘⁱʳᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ˣ4 – 6ˣ + 3
ʜᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️
Answer:
Step-by-step explanation:
Given function: f (x) = 4x3 – 6
Now, integrate the function:
∫4x3 – 6 = 4(x4/4)-6x + C
∫4x3 – 6 = x4 – 6x + C
Thus, the antiderivative of the function, F is x4 – 6x + C, where C is a constant
Also, given that, F(0) = 3,
Now, substitute x = 0 in the obtained antiderivative function, we get:
(0)4 – 6(0) + C = 3
Therefore, C = 3.
Now, substitute C = 3 in antiderivative function
Hence, the required antiderivative function is x4 – 6x + 3