Math, asked by parameshwariappa, 7 months ago

Determine the AP whose third term is 5 and 7 term in 9

Answers

Answered by TheProphet
2

Solution :

\bigstar Firstly, we know that formula of an A.P;

\boxed{\bf{a_n=a+(n-1)d}}}

  • a is the first term.
  • d is the common difference.
  • n is the term of number.

\underline{\boldsymbol{According\:to\:the\:question\::}}}

\longrightarrow\sf{a_3=5}\\\\\longrightarrow\sf{5=a+(3-1)d}\\\\\longrightarrow\sf{5=a+2d..........................(1)}

&

\longrightarrow\sf{a_7=9}\\\\\longrightarrow\sf{9=a+(7-1)d}\\\\\longrightarrow\sf{9=a+6d..........................(2)}

\underline{\boldsymbol{Using\:by\:Substitution\:method\::}}}

From equation (2),we get;

\longrightarrow\sf{9=a+6d}\\\\\longrightarrow\sf{a=9-6d...........................(3)}

∴ Putting the value of a in equation (1),we get;

\longrightarrow\sf{5=9-6d+2d}\\\\\longrightarrow\sf{5-9=-4d}\\\\\longrightarrow\sf{-4=-4d}\\\\\longrightarrow\sf{d=\cancel{-4/-4}}\\\\\longrightarrow\bf{d=1}

∴ Putting the value of d in equation (3),we get;

\longrightarrow\sf{a=9-6(1)}\\\\\longrightarrow\sf{a=9-6}\\\\\longrightarrow\bf{a=3}

\boxed{\bf{Arithmetic\:progression\::}}}}

\bullet\:\sf{a=\boxed{\bf{3}}}\\\\\bullet\sf{a+d=3+1=\boxed{\bf{4}}}\\\\\bullet\sf{a+2d=3+2(1)=3+2=\boxed{\bf{5}}}\\\\\bullet\sf{a+2d=3+3(1)=3+3=\boxed{\bf{6}}}

Similar questions