Math, asked by gundasasikar2004, 11 months ago

determine the area of the triangle with vertices A(1, 1,2) B (2,4,6) C(0,5,5)​

Answers

Answered by Swarup1998
0

Coordinate Geometry (3D)

Formula to find area of a triangle:

Let the three vertices of the triangle be A\:(x_{1},\:y_{1},\:z_{1}), B\:(x_{2},\:y_{2},\:z_{2}), C\:(x_{3},\:y_{3},\:z_{3}) respectively and let the area of the triangle be \Delta.

Then,

\Delta^{2}=\frac{1}{4}\left|\begin{array}{ccc}y_{1}&z_{1}&1\\y_{2}&z_{2}&1\\y_{3}&z_{3}&1\end{array}\right|^{2}

+\frac{1}{4}\left|\begin{array}{ccc}z_{1}&x_{1}&1\\z_{2}&x_{2}&1\\z_{3}&x_{3}&1\end{array}\right|^{2}+\frac{1}{4}\left|\begin{array}{ccc}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right|^{2}

Solution:

The vertices of the triangle \Delta ABC are A\:(1,\:1,\:2), B\:(2,\:4,\:6) and C\:(0,\:5,\:5).

So we have:

\quad\quad x_{1}=1,\: y_{1}=1,\: z_{1}=2

\quad\quad x_{2}=2,\: y_{2}=4,\: z_{2}=6

\quad\quad x_{3}=0,\:y_{3}=5,\:z_{3}=5

\therefore \left|\begin{array}{ccc}y_{1}&z_{1}&1\\y_{2}&z_{2}&1\\y_{3}&z_{3}&1\end{array}\right|=\left|\begin{array}{ccc}1&2&1\\4&6&1\\5&5&1\end{array}\right|

=1(6-5)-2(4-5)+1(20-30)

\quad\quad(Expanding along R_{1})

=1+2-10

=-7,

\quad\left|\begin{array}{ccc}z_{1}&x_{1}&1\\z_{2}&x_{2}&1\\z_{3}&x_{3}&1\end{array}\right|=\left|\begin{array}{ccc}2&1&1\\6&2&1\\5&0&1\end{array}\right|

=2(2-0)-1(6-5)+1(0-10)

\quad\quad(Expanding along R_{1})

=4-1-10

=-7 and

\quad\left|\begin{array}{ccc}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right|=\left|\begin{array}{ccc}1&1&1\\2&4&1\\0&5&1\end{array}\right|

=1(4-5)-1(2-0)+1(10-0)

\quad\quad(Expanding along R_{1})

=-1-2+10

=7

Putting the values in the above formula to find area of a triangle in three dimensions, we get

\quad\Delta^{2}=\frac{1}{4}\:(-7)^{2}+\frac{1}{4}\:(-7)^{2}+\frac{1}{4}\:(7)^{2}

\quad\quad\:=\frac{1}{4}\:(49+49+49)

\quad\quad\:=\frac{1}{4}\times 147

\quad\quad\:=36.75

where \Delta is the area of the given triangle

\Rightarrow \Delta^{2}=36.75

\Rightarrow \Delta=6.062

Answer: Therefore, the area of the given triangle is 6.062 sq. units.

Answered by bestwriters
0

The area of the triangle is 6.06 square units.

Step-by-step explanation:

The vertices of the triangle are:

A (1, 1, 2); B (2, 4, 6); C (0, 5, 5)​

Now,

\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} = (2\hat{i}+4 \hat{j}+6 \hat{k}) - (\hat{i}+1 \hat{j}+2 \hat{k}) = \hat{i}+3 \hat{j}+4 \hat{k}

\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A} = (0\hat{i}+5 \hat{j}+5 \hat{k}) - (2\hat{i}+4 \hat{j}+6 \hat{k}) = -2\hat{i}+ \hat{j}-1 \hat{k}

Now,

\overrightarrow{A B} \times \overrightarrow{A C} = \left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\1 & 3 & 4 \\-2 & 1 & -1\end{array}\right|

\overrightarrow{A B} \times \overrightarrow{A C} = -7 \hat{i}-7 \hat{j}+7 \hat{k}

Now,

|\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{(-7)^{2}+(-7)^{2}+(7)^{2}}

|\overrightarrow{A B} \times \overrightarrow{A C}| = √(49 + 49 + 49)

|\overrightarrow{A B} \times \overrightarrow{A C}| = 12.12

The area of the triangle is given by the formula:

A =\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|

On substituting the values, we get,

A = 1/2 × 12.12

∴ A = 6.06 square units

Similar questions