Math, asked by saxenaanamika35, 4 months ago

determine the condition for the roots of the equation ax square + bx + c is equals to zero to differ by 2​

Answers

Answered by mathdude500
1

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

Let 'α' and 'β' are two zeroes of equation ax² + bx + c = 0, then

We know that

\boxed{\purple{\tt Sum\ of\ the\ zeroes= \alpha  +  \beta =  \frac{-b}{a}}}

OR

\boxed{\red{\sf Sum\ of\ the\ zeroes= \alpha  +  \beta =  \frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

And

\boxed{\purple{\tt Product\ of\ the\ zeroes= \alpha  \beta   = \frac{c}{a}}}

OR

\boxed{\red{\sf Product\ of\ the\ zeroes= \alpha  \beta  = \frac{Constant}{coefficient\ of\ x^{2}}}}

Now,

According to statement,

we have

\rm :\implies\: | \alpha -   \beta |  = 2

On squaring both sides, we get

\rm :\implies\: { | \alpha -   \beta | }^{2}  =  {2}^{2}

\rm :\implies\: { \alpha }^{2}  +  { \beta }^{2}  - 2 \alpha  \beta  = 4

\rm :\implies\: {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  - 2 \alpha  \beta  = 4

\rm :\implies\: { (\alpha  +  \beta) }^{2}  - 4 \alpha  \beta  = 4

\rm :\implies\:\dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{4c}{a}  = 4

\rm :\implies\:\dfrac{ {b}^{2} - 4ac }{ {a}^{2} }  = 4

\rm :\implies\: {b}^{2}  - 4ac =  4{a}^{2}

is the required condition.

Similar questions