Math, asked by aarav11671, 1 month ago

Determine the dimensions of the rectangle with an area 251 square feet and minimum perimeter. Round the lengths to the nearest tenth of a foot

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that,

Length of rectangle be 'x' feet

and

Breadth of rectangle be 'y' feet.

Now, it is given that

\rm :\longmapsto\:Area_{rectangle} = 251

\rm :\longmapsto\:x \times y = 251

\bf\implies \:y = \dfrac{251}{x} -  -  - (1)

Now,

Let assume that Perimeter of rectangle is P feet.

We know,

\red{\rm :\longmapsto\:Perimeter_{rectangle} = 2(Length + Breadth)}

So,

\rm :\longmapsto\:P = 2(x + y)

On substituting the value of y, we get

\rm :\longmapsto\:P = 2 \bigg(x + \dfrac{251}{x}  \bigg)

On differentiating w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} P = 2\dfrac{d}{dx} \bigg(x + \dfrac{251}{x}  \bigg)

We know,

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

\boxed{ \rm{ \dfrac{d}{dx} \frac{1}{ {x}^{n} }  =  \frac{ - n}{ {x}^{n + 1} }}}

So, using this we get

\rm :\longmapsto\:\dfrac{dP}{dx} = 2 \bigg(1  -  \dfrac{251}{ {x}^{2} }  \bigg) -  -  - (1)

For maxima or minima, we have

\red{\rm :\longmapsto\:\dfrac{dP}{dx} = 0}

\rm :\longmapsto\: 2 \bigg(1  -  \dfrac{251}{ {x}^{2} }  \bigg) = 0

\rm :\longmapsto\: 1  -  \dfrac{251}{ {x}^{2} }   = 0

\rm :\longmapsto\:   -  \dfrac{251}{ {x}^{2} }   =  - 1

\rm :\longmapsto\:  \dfrac{251}{ {x}^{2} }   =  1

\rm :\longmapsto\: {x}^{2}  = 251

\bf\implies \:x =  \sqrt{251}  = 15.8

On differentiating equation (1), w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{dP}{dx} = 2\dfrac{d}{dx} \bigg(1  -  \dfrac{251}{ {x}^{2} }  \bigg)

\rm :\longmapsto\: \dfrac{d {}^{2} P}{d {x}^{2} } = 2 \bigg(0  +  \dfrac{251 \times 2}{ {x}^{3} }  \bigg)

\boxed{ \rm{ \because \:  \dfrac{d}{dx} \frac{1}{ {x}^{n} }  =  \frac{ - n}{ {x}^{n + 1} } \: \:  \:  and \:  \: \:  \dfrac{d}{dx}k = 0}}

\rm :\longmapsto\: \dfrac{d {}^{2} P}{d {x}^{2} } = \dfrac{1004}{ {x}^{3} }   > 0

\bf\implies \:P \: is \: minimum.

Hence,

\bf\implies \:y = \dfrac{251}{ \sqrt{251} } =  \sqrt{251}  = 15.8\: feet

So,

\begin{gathered}\begin{gathered}\bf\: Dimensions \: are \: \begin{cases} &\sf{Length \:  =  \:  \sqrt{251} = 15.8  \: feet} \\ &\sf{Breadth \:  =  \:  \sqrt{251}   = 15.8\: feet} \end{cases}\end{gathered}\end{gathered}

Similar questions