Math, asked by ah731710, 2 months ago

Determine the Domain and Range for the following functions:
f(x)=√x∧2-169

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  \sqrt{ {x}^{2} - 169 }

Domain

\rm :\longmapsto\: \sqrt{ {x}^{2} - 169 } \: is \: defined \: if \:  {x}^{2} - 169 \geqslant 0

\rm :\longmapsto\: {x}^{2} -  {13}^{2}   \geqslant 0

\rm :\longmapsto\:(x + 13)(x - 13) \geqslant 0

\rm :\implies\:x \leqslant  - 13 \:  \: or \:  \: x \geqslant 13

\bf\implies \:x \:  \in \: (  - \infty , - 13] \:  \cup \: [13, \:  \infty )

Range

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 169}

\rm :\longmapsto\: {y}^{2} = {x}^{2} - 169

\rm :\longmapsto\: {x}^{2} = 169 +  {y}^{2}

\rm :\longmapsto\:x =  \sqrt{169 +  {y}^{2} }

\bf\implies \:y \geqslant 0

\bf\implies \:y \:  \in \: [0, \:  \infty )

Basic Concept Used :-

Domain :- Let f(x) be a function, then set of those values of x where f(x) is well defined is called domain.

Range :-

To find the range of f(x)

Step : - 1. Let y = f(x)

Step :- 2. Express x in terms of y, say x = g(y).

Step :- 3. Find the domain of g(y).

Step :- 4. This will be the range of f(x).

Additional Information :-

Let assume that a > b then

\rm :\longmapsto\:(x - a)(x - b) < 0 \implies \: a < x < b

\rm :\longmapsto\:(x - a)(x - b)  \leqslant  0 \implies \: a  \leqslant  x  \leqslant  b

\rm :\longmapsto\:(x - a)(x - b)  >  0 \implies \: x < b \:  \: or \:  \: x > a

\rm :\longmapsto\:(x - a)(x - b)   \geqslant   0 \implies \: x  \leqslant  b \:  \: or \:  \: x  \geqslant  a

Similar questions