Determine the least count of the Vernier Callipers and measure the length and diameter of a small cylinder (average of three sets)may be a metal rod of length 2 to 3 cm and diameter 1 to 2 cm.
Answers
10 V.S.D.= 9 M.S.D.
1 V.S.D.= 9/10 M.S.D. = 0.9 mm.
Vernier Constant, V.C.= 1 M.S.D.-1 V.S.D. = (1-0.9) mm = 0.1 mm = 0.01cm.
Zero error
(i).........cm,
(ii).........cm,
(iii)...........cm.
Mean zero error (e)=..........cm.
Mean zero correction (c) = -e=.........cm.Dimension to be measuredSl NoMain Scale ReadingMSR cmVernier Scale ReadingVSR cmVSR x L.CcmToatl ReadingMSR + (V S R x L.C)cmMeancm Diameter of the bob Diameter of the cylinder Length of thye cylinder Length of the block Breadth of the block Thickness of the block Internal diameter of the beaker Internal depth of the beaker Calculations
Mean corrected diameter------------cm
Volume of sphere,=---------cm3= ------m3.
Mean corrected length of the block, l=............cm
Mean corrected breadth of the block, b= .......cm
Mean corrected thickness of the block, h= .........cm
Volume of block , =........................cm3 =..........m3
Density of the block material,=..................cm
Mean corrected internal diameter,D=................cm
Mean correcteddepth,d=........cm
Volume of beaker / calorimeter ,= ..........cm3=............m3.
The ResultThe volume of the beaker / calorimeter is ...........m3.
Volume of Sphere=.......................... m3
Volume of block is ................................m3
The volume of the beaker / calorimeter is ...........cm3.
10 V.S.D.= 9 M.S.D.
1 V.S.D.= 9/10 M.S.D. = 0.9 mm.
Vernier Constant, V.C.= 1 M.S.D.-1 V.S.D. = (1-0.9) mm = 0.1 mm = 0.01cm.
Zero error
(i).........cm,
(ii).........cm,
(iii)...........cm.
Mean zero error (e)=..........cm.
Mean zero correction (c) = -e=.........cm.Dimension to be measuredSl NoMain Scale ReadingMSR cmVernier Scale ReadingVSR cmVSR x L.CcmToatl ReadingMSR + (V S R x L.C)cmMeancm Diameter of the bob Diameter of the cylinder Length of the cylinder Length of the block Breadth of the block Thickness of the block Internal diameter of the beaker Internal depth of the beaker Calculations
Mean corrected diameter------------cm
Volume of sphere,=---------cm3= ------m3.
Mean corrected length of the block, l=............cm
Mean corrected breadth of the block, b= .......cm
Mean corrected thickness of the block, h= .........cm
Volume of block , =........................cm3 =..........m3
Density of the block material,=..................cm
Mean corrected internal diameter,D=................cm
Mean correcteddepth,d=........cm
Volume of beaker / calorimeter ,= ..........cm3=............m3.
The ResultThe volume of the beaker / calorimeter is ...........m3.
Volume of Sphere=.......................... m3
Volume of block is ................................m3
The volume of the beaker / calorimeter is ...........cm3.
Explanation:
please fill the blank in the blank