Physics, asked by sharathpatel1420, 19 days ago

Determine the maximum speed of the electrons ejected when a light of wavelength 386 nm is incident on a metal surface whose work function is 1.96eV​

Answers

Answered by aryastephen199678
1

Answer:

     The maximum speed of the electrons ejected when a light of wavelength 386 nm is incident on a metal surface having work function is 1.96eV​ is,  6.6 \times 10^{5} \mathrm{~m} / \mathrm{sec}    

Explanation:

 The Einstein's photoelectric equation is given by,

         h v=\ W+\mathrm{K}_{\max }

       where,

            h v    -   Energy of emitted photon

            h      -  Plank's constant ( \mathrm{h}=6.63 \times 10^{34} \text { Joule }} \text { sec} )

            v      -  Frequency of incident light

            v=\frac{c}{\lambda}      

            \lambda     -    Wavelength of incident light

            W     -  Work function ( Minimum energy needed to remove an electron)

          {K}_{\max } -  Maximum kinetic energy of emitted electron

        We know,

                              \mathrm{K}_{\max }=\frac{1}{2}  \mathrm{mv}_{\mathrm{max}}^{2} ,  

                              m -  mass of electron

               i.e.          h v=W+\left(\frac{1}{2} m v^{2}\right)_{\max }

                             \begin{array}{l}\left(\frac{1}{2} m v^{2}\right)_{\max }=h v-W \\\left(\frac{1}{2} m v^{2}\right)_{\max }=\frac{h c}{\lambda}-W\end{array}

        Given,  

               \lambda = 386 nm = 386\times 10^{-9} m

               W = 1.96 eV = 1.96 \times 1.6 \times10^{-19} J    

               C=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}

               m = 9.1 \times 10^{-31} kg

               

               

                        \left(\frac{1}{2} m v^{2}\right)_{\max }     =  \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{386 \times 10^{-9}}-(1.96 \times 1.6 \times 10^{-19})  

                                              =  (5.1295\times 10^{-19}  ) - (3.136\times 10^{-19})      

                                              = 1.9935\times 10^{-19}  J    

                         \begin{aligned}\left(\frac{1}{2} m v^{2}\right)_{\max } &=1.9935 \times 10^{-19} \text { Joule } \\\left(\mathrm{v}^{2}\right)_{\max } &=\frac{1.9935 \times 10^{-19} \times 2}{9.1\times10^{-31} }\end{aligned}

                                    \mathbf{v}_{\max }= \sqrt{\frac{1.9935 \times 10^{-19} \times 2}{9.1 \times 10^{-31}}}

                                             = 6.6 \times 10^{5} m/sec          

                               

           

           

Similar questions