Math, asked by sk4773204, 4 months ago

Determine the natural of root of the quadratic equation 2x² - 3x = 4​

Answers

Answered by kingofself
0

Answer:

b²-4ac=41

b²-4ac>0

The roots are real and unequal

we get two distinct roots

\frac{-b+\sqrt{ b^{2}-4ac }}{2a} and \frac{-b-\sqrt{ b^{2}-4ac }}{2a}

Step-by-step explanation:

2x²-3x-4=0

a=2

b=-3

c=-4

To find Nature of roots

b²-4ac

(-3)²-4(2)(-4)  

=9+32

b²-4ac=41

41>0

b²-4ac>0

The roots are real and unequal

we get two distinct roots

\frac{-b+\sqrt{ b^{2}-4ac }}{2a} and \frac{-b-\sqrt{ b^{2}-4ac }}{2a}

(-b±\sqrt{b^{2}-4ac })/2a

\sqrt{(-3)^{2}-4(2)(-4) })/2(2)

\sqrt{(-3)^{2}-4(2)(-4) })/4

\sqrt{9+32 })/4

\sqrt{41})/4

The roots are\frac{3+\sqrt{41}}{4}  and \frac{3-\sqrt{41}}{4}

Similar questions
Math, 2 months ago