Math, asked by shyjap3614, 1 month ago

Determine the nth differential coefficient of x^na^x

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

\tt{y=x^n\cdot\,a^x}

According to Leibniz rule,

For a function y = U.V , then its n^{th} differential coefficient is

\bf{y_{n}=U_{n}+\,^{n}C_{1}\,U_{n-1}\cdot\,V_{1}+\,^{n}C_{2}\,U_{n-2}\cdot\,V_{2}+\,^{n}C_{3}\,U_{n-3}\cdot\,V_{3}+\dots}\\

\bf{\displaystyle\implies\,y_{n}=\sum^{n}_{k=0}\,^{n}C_{k}\cdot\,U_{n-k}\cdot\,V_{k}}\\

\sf{Put\,\,\,U=a^x\,\,\,\,and\,\,\,\,V=x^n}

So,

\bf{\displaystyle\implies\,y_{n}=\sum^{n}_{k=0}\,^{n}C_{k}\cdot\,\dfrac{d}{dx^{n-k}}(a^x)\cdot\,\dfrac{d}{dx^{k}}(x^n)}\\

\bf{\displaystyle\implies\,y_{n}=\sum^{n}_{k=0}\,^{n}C_{k}\cdot\,\dfrac{a^x}{\left(\ln(a)\right)^{n-k}}\cdot\,k!\cdot\,x^{n-k}}\\

\bf{\displaystyle\implies\,y_{n}=\sum^{n}_{k=0}\dfrac{n!}{k!(n-k)!}\cdot\,\dfrac{a^x}{\left(\ln(a)\right)^{n-k}}\cdot\,k!\cdot\,x^{n-k}}\\

\bf{\displaystyle\implies\,y_{n}=\sum^{n}_{k=0}\dfrac{n!}{(n-k)!}\cdot\,\dfrac{a^x}{\left(\ln(a)\right)^{n-k}}\cdot\,x^{n-k}}\\

Similar questions