Science, asked by alimshaikh9a, 1 month ago

determine the resistence of a copper wire having a length of 1 km of diameter of 0.5mm​

Answers

Answered by Radhaisback2434
1

Explanation:

ρ= Resisivity of copper =1.7×10

−3

Ωm

convertung all measures into metres.

L=1km=1000m=10

3

m

d=0.5mm=0.5×10

−3

m

If r is the radius of the wire then, its area of cross-section

A=πr

2

∴A=π×(

2

d

)

2

=

4

π

(0.5×10

−3

)

2

m

2

R=ρ

A

L

=

0.2×10

−3

m

2

1.7×10

−3

Ωm×(10

3

m)

=85Ω

Hope its help..

Answered by mrnickname50
1

Plz mark me As brainlist ^.^

Correct option is

Correct option isA

Correct option isA85

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωm

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103m

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103md=0.5mm=0.5×10−3m

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103md=0.5mm=0.5×10−3mIf r is the radius of the wire then, its area of cross-section

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103md=0.5mm=0.5×10−3mIf r is the radius of the wire then, its area of cross-sectionA=πr2

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103md=0.5mm=0.5×10−3mIf r is the radius of the wire then, its area of cross-sectionA=πr2∴A=π×(2d)2

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103md=0.5mm=0.5×10−3mIf r is the radius of the wire then, its area of cross-sectionA=πr2∴A=π×(2d)2=4π(0.5×10−3)2m2

Correct option isA85ρ= Resisivity of copper =1.7×10−3Ωmconvertung all measures into metres.L=1km=1000m=103md=0.5mm=0.5×10−3mIf r is the radius of the wire then, its area of cross-sectionA=πr2∴A=π×(2d)2=4π(0.5×10−3)2m2R=ρAL=0.2×10−3m21.7×10−3Ωm×(103m)=85Ω

Similar questions