Math, asked by deon92421, 2 months ago

Determine the set of values of k for which the line x + 3y = k does not intersect the curve y^2 = 2x + 3.

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\: {y}^{2} = 2x + 3 -  -  - (1)

and the equation of line is

\rm :\longmapsto\:x + 3y = k -  -  - (2)

From equation (2), we get

\rm :\longmapsto\:x = k - 3y

Substituting this value of x in equation (1), we get

\rm :\longmapsto\: {y}^{2} = 2(k - 3y) + 3

\rm :\longmapsto\: {y}^{2} = 2k - 6y + 3

\rm :\longmapsto\: {y}^{2} - 2k  +  6y  - 3 = 0

\rm :\longmapsto\: {y}^{2} +  6y  - 2k - 3 = 0

So, its a quadratic equation in y.

So, for no point of intersection, Discriminant < 0

\rm :\implies\: {b}^{2} - 4ac  &lt;  0

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b = 6

\rm :\longmapsto\:c =  - 2k - 3

So, on substituting the values, we get

\rm :\longmapsto\: {6}^{2} - 4(1)( - 2k  - 3) &lt; 0

\rm :\longmapsto\: {6}^{2}  + 4(1)(2k  +  3) &lt; 0

\rm :\longmapsto\: 36  + 8k  +  12 &lt; 0

\rm :\longmapsto\: 8k  +  48&lt; 0

\rm :\longmapsto\: 8k&lt;  - 48

\rm :\longmapsto\: k&lt;  - 6

\bf :\implies\:k \:  \in \: ( -  \:  \infty , \:  - 6)

Verification :-

Let assume the value of k = - 9

So, equation of line is

\rm :\longmapsto\:x + 3y =  - 9

On substituting x = 0, we get

\rm :\longmapsto\:3y =  - 9

\rm :\longmapsto\:y =  - 3

On substituting y = 0, we get

\rm :\longmapsto\:x + 3(0) =  - 9

\rm :\longmapsto\:x =  - 9

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf  - 3 \\ \\ \sf  - 9 &amp; \sf 0  \end{array}} \\ \end{gathered}

See the attachment, we concluded that line and curve donot intersect with each other.

Attachments:
Similar questions