Computer Science, asked by kesavankesavansm, 11 months ago

Determine the stability of closed loop control system whose characteristic equation is 

s5+3s4+5s3+4s2+s+3=0​

Answers

Answered by sahilsalmani837
0

Answer:

46815*6+6-6*54556/6-+5+5-6---*%/6-66--66-*3*3*-jjjJJ6644545445455445454757544545445454545344346434344

Explanation:

sjsjhshdhdhdhdhdhdhchdhddhdhddhdhdydhedhdhdhehehdueudhdhdudfhdudufighdhhdhggggghhhghhhggtjfjfjjhggg55986644233333363864464644646464644664646465566464644646464644646464464646446464646446464644658858581161616113435626265646165616134611614464623162431262663232

djddjdjjjjjnv56663668597946466464646644313131313119282282826656567676464609066464646867686886868646865646446464646446464646446464644666jjj6464646jjdjsjssjsidjddkdjdjdjfjddjdjdjddjdjdhdjdjrjrfjururhrrurhdudhdhwjdjejrdjdurjdurjdejejdDddddddttt

Answered by Anonymous
0

Given:

  • Characteristic equation = s^5 +3s^4 +5s^3 +4s^2 +s+3 =0

To find:

  • Stability of closed loop control system

Answer:

  • This is determined by Routh - Hurwitz Test. To have a stable closed loop control system, all the elements of the first column of the Routh array should have the same sign .
  • Routh Array

         s^5     1                                5                              1

         s^4    3                                4                              3

         s^3    \frac{5*3 - 1*4}{3} = \frac{11}{3}         \frac{3*1 - 1*3}{3}   = 0             \frac{0*3 - 0*1}{3} =0  

         s^2    \frac{4 *\frac{11}{3} - 3 *0}{\frac{11}{3}}  = 4        \frac{\frac{11}{3}* 3 - 3*0}{\frac{11}{3}}  = 3            \frac{\frac{11}{3}*0-3*0}{\frac{11}{3}}  = 0

         s^1   \frac{4*0 - \frac{11}{3}*3}{4} =\frac{-11}{4}            0                             0

         s^0   \frac{\frac{-11}{4}*3 - 4*0}{\frac{-11}{4}} =3              0                             0

  • As in the first column, all the numbers don't have the same sign. So, the closed loop control system whose characteristic equation is  s^5 +3s^4 +5s^3 +4s^2 +s+3 =0  , is unstable.
Similar questions