Math, asked by mantashazaidi4, 11 months ago

determine the sum of first 35 terms of an a.p .. if second terms is 2 and the seventh term is 22?​

Answers

Answered by BrainlyKing5
10

Answer

\boxed{\boxed{\mathsf{{S}_{35} = 2310}}}

Step-by-step Explanation :

Given

  • Second term of an AP = 2

  • Seventh term = 22

To find

  • Sum of first 35 terms.

Solution

Now According to question

\longrightarrow \mathsf{A.P = a_1 , (a_2 = 2 ), a_3 ........ (a_7 = 22)....}

Now we know that,

\longrightarrow \mathsf{a_2 = a_1 + d}

\longrightarrow \mathsf{a_3 = a_1 + 2d}

Therefore,

\longrightarrow \mathsf{a_7 = a_1 + 6d}

Now putting value of a2 and a7 as per given question,

\longrightarrow \mathsf{a_1 + d = 2} ---------- (1)

\longrightarrow \mathsf{a_1+ 6d = 22} ---------(2)

Now Subtracting EQ 1 from 2 we have

\longrightarrow \mathsf{a_1+ 6d - (a_1 +d) = 22 - 2}

\longrightarrow \mathsf{a_1+ 6d - a_1 - d  = 22 - 2}

\longrightarrow \mathsf{5d = 20}

\longrightarrow \mathsf{d = \dfrac{20}{5}}

\longrightarrow \boxed{\mathsf{d = 4}}

Now putting value of d = 4 in EQ (1)

\longrightarrow \mathsf{a_1 + d = 2}

\longrightarrow \mathsf{a_1 + 4 = 2}

\longrightarrow \mathsf{a_1 = 2 - 4}

\longrightarrow \boxed{\mathsf{a_1 = -2}}

Now to find Sum we have formula

\boxed{\boxed{\mathtt{\bigstar \: S_n = \dfrac{n}{2} \bigg( 2(a_1) + (n - 1)d \bigg)}}}

Where, here

\mathsf{S_n = Sum\: of\: terms \: till \: n = {S}_{35}}

\mathsf{n =Number\: of \: terms = 35 }

\mathsf{d = common difference = 4}

\mathsf{a_1 = First term = -2}

Now putting this values in the formula we have

\longrightarrow \mathsf{{S}_{35} = \dfrac{35}{2} \bigg( 2(-2) + (35 - 1)4 \bigg)}

\longrightarrow \mathsf{{S}_{35} = \dfrac{35}{2} \bigg( (-4) + (34)4 \bigg)}

\longrightarrow \mathsf{{S}_{35} = \dfrac{35}{2} \bigg( (-4) + 136\bigg)}

\longrightarrow \mathsf{{S}_{35} = \dfrac{35}{2} \bigg( 132 \bigg)}

\longrightarrow \mathsf{{S}_{35} = 35 (66)}

\longrightarrow \boxed{\mathsf{{S}_{35} = 2310}}

Therefore we have Required answer

\underline{\boxed{\mathsf{{S}_{35} = 2310}}}

Answered by RvChaudharY50
93

Given :------

  • 2nd Term of AP = 2
  • 7th Term of AP = 22

To Find :------

  • Sum of 35 terms of AP ..

Formula used :-----

nth term of AP is ,

\large\red{\boxed{\sf Tn = a + (n - 1)d}}

sum of nth term of AP is,

\large\red{\boxed{\sf Sn = \frac{n}{2}[2a + (n - 1)d]}}

______________________________

Solution ,

putting values now in Tn formula we get,

T2 = a +d = 2 ----------------------- Equation (1)

T7 = a + 6d = 22 ----------------- Equation (2)

Subtracting Equation (1) from Equation (2) , we get,

(a+6d) - (a+d) = 22 - 2

→ 5d = 20

d = 4

putting in any Equation , now we get,

a = 2 - 4 = (-2)

so, our AP series is :--- -2 , 2, 6 , 10 _____________

Now , sum of First 35 terms of AP will be :------

Again , putting Values in above formula we get,

Sn =  \frac{35}{2} (2 \times ( - 2) + (35 - 1)4) \\  \\ Sn =  \frac{35}{2} ( - 4 + 136) \\  \\ Sn =  \frac{35 \times \cancel 132}{ \cancel2}  \\  \\ Sn \:  = 2310

So, sum of 35 terms of AP will be 2310...

(Hope it Helps you)

Similar questions