determine the value of cos^2 theta + sin^2 theta & cos^2 theta - sin^2 theta
Answers
Answer:
Correct option is
Correct option isA
Correct option isA90
Correct option isA90Given, 2sin
Correct option isA90Given, 2sin 2
Correct option isA90Given, 2sin 2 θ−cos
Correct option isA90Given, 2sin 2 θ−cos 2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2 θ=1
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2 θ=1⇒sinθ=sin90
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2 θ=1⇒sinθ=sin90 0
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2 θ=1⇒sinθ=sin90 0
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2 θ=1⇒sinθ=sin90 0 ⇒θ=90
Correct option isA90Given, 2sin 2 θ−cos 2 θ=2⇒2sin 2 θ−1+sin 2 θ=2⇒3sin 2 θ−1=2⇒sin 2 θ=1⇒sinθ=sin90 0 ⇒θ=90 ∘
Step-by-step explanation:
hope it's helpful
❤️sam
Answer:
The value of \cos 2\thetacos2θ = \dfrac{1}{2}
2
1
Step-by-step explanation:
We have,
2 \sin 2\thetasin2θ = \sqrt{3}
3
To find, the value of \cos 2\thetacos2θ = ?
∴ 2 \sin 2\thetasin2θ = \sqrt{3}
3
Dividing both sides by 2, we get
⇒ \sin 2\thetasin2θ = \dfrac{\sqrt{3}}{2}
2
3
⇒ \sin 2\thetasin2θ = \sin 60sin60
⇒ 2θ = 60°
⇒ θ = 30°
∴ \cos 2\thetacos2θ
= \cos 2(30)cos2(30)
= \cos 60cos60
= \dfrac{1}{2}
2
1
∴ The value of \cos 2\thetacos2θ = \dfrac{1}{2}
2
1