Math, asked by kanyatiwari, 11 months ago

determine the value of k for which quadratic equation(k+5)x2-(2k+3)x+(k-1)=0 has no real roots

Answers

Answered by sahil575814
8

Answer:

(k+5)*2-(2k+3)x+(k-1)=o

Step-by-step explanation:

1st solve bracket

2k+10-2kx+3x+k-0

3k+10-2(x

Answered by shaista16lm
5

Answer:

\frac{29}{4} < k to have no real roots in the quadratic equation.

Step-by-step explanation:

Given an equation, (k+5)x^{2} -(2k+3)x+(k-1)=0 has no real roots.

The condition for o real roots is Discriminant of the quadratic equation is less than Zero ⇒ D< 0

(k+5)x^{2} -(2k+3)x+(k-1)=0 From the equation,

a = k+5

b= -(2k+3)

c= k-1

We know that, D= b^{2} - (4 \times a \times c)

D <0 ⇒ b^{2} - (4 \times a \times c) &lt; 0

           -(2k+3)^{2} - 4(k+5)\times ( k-1) &lt; 0  

             ((-2k)^{2}+9 + 2(- 2k\times -3 ))- 4\times (k^{2} -k+5k-5) &lt; 0

             (4k^{2}  +9 +12k )- 4\times (k^{2}+4k-5) &lt; 0

             (4k^{2}  +9 + 12k)- (4k^{2}+16k- 20) &lt; 0

             (4k^{2}  +9 + 12k)- 4k^{2}-16k+ 20 &lt; 0

              4k^{2}- 4k^{2} + 12k -16k+ 20  +9 &lt; 0

             -4k +29 &lt; 0

              29 &lt; 4k

             ∴ \frac{29}{4} &lt; k

Hence, the value of k should be ⇒ k &gt; \frac{29}{4} , so that the given quadratic equation has no real roots.

Similar questions