determine the value of the following 2^2+log3 base2
Answers
HEY DEAR BRAINLY USER
-----------------------------------------------------------------------------------
FIRST SEE SOME FORMULAS
i ) a^m+n = a^m × a^n ------( 1 )
ii) a^log (base a) ( x ) = x ----- ( 2 )
____________________________________________________
NOW UR ANSWER IS 12
EXPLANATION =
2^2 + log ( base 2 ) ( 3 )
= 2^2 × 2^ log ( base 2 )(3 ) [ from (1)]
= 4 × 3 [ from ( 2 )]
= 12
NOW THE VALUE OF
log 12 = log 12/ log 2
2 = 3.58496
the value of the equation= 3.5896
---------------------------------------------------------------
THANK UH
HAVE A NICE DAY
KEEP SMILE
Answer:
3.5896
Step-by-step explanation:
2^2 + log 3
2
First step is:
2^2= log 4
2
log 4 + log 3 ---------following the laws of indeces (we can directly 2 2 add the two using the first law)
first law states log x + log y = log xy
a a a
= log (4x3) = log 12
2 2
Formula 2: log x = log x/ log b
b a a
Hence we can convert our answer to log base 10(log)
log 12 = log 12/ log 2
2 = 3.58496
Therefore the value of the above equation= 3.5896