Math, asked by priyamerupala, 1 year ago

determine the value of the following 2^2+log3 base2

Answers

Answered by Anonymous
5

HEY DEAR BRAINLY USER

-----------------------------------------------------------------------------------

FIRST SEE SOME FORMULAS

i ) a^m+n = a^m × a^n ------( 1 )

ii) a^log (base a) ( x ) = x ----- ( 2 )

____________________________________________________

NOW UR ANSWER IS 12

EXPLANATION  =

2^2 + log ( base 2 ) ( 3 )

= 2^2 × 2^ log ( base 2 )(3 ) [ from (1)]

= 4 × 3 [ from ( 2 )]

= 12

NOW THE VALUE OF

log  12        =  log 12/ log 2

    2            =  3.58496

the value of the equation= 3.5896    

---------------------------------------------------------------

THANK UH

HAVE A NICE DAY

KEEP SMILE

Answered by Blaezii
2

Answer:

3.5896

Step-by-step explanation:

2^2 + log  3

             2

First step is:

2^2= log   4

             2

log  4  +   log   3  ---------following the laws of indeces (we can directly            2              2                         add the two using the first law)

first law states log  x   +  log  y  =   log  xy

                            a             a              a

 

=   log   (4x3)    =  log  12

                   2                      2

        

Formula 2:   log  x  = log  x/ log  b

                        b            a         a

Hence we can convert our answer to log base 10(log)

log  12        =  log 12/ log 2

    2            =  3.58496

Therefore the value of the above equation= 3.5896    

Similar questions