Math, asked by english652, 5 months ago

determine the values of a and b so that the following system of linear equations have infinitely many solutions
(2a – 1)x + 3y – 5 = 0
3x + (b – 1)y – 2 = 0​

Answers

Answered by Anonymous
67

Answer:

 {a_1} = 2a – 1

 {a_2} = 3

 {b_1} = 3

 {b_2} = b – 1

 {c_1} = – 5

 {c_2} = – 2

 {a_1} / {a_2} =  {b_1} / {b_2} =  {c_1} / {c_2}

 {a_1} / {a_2} =  {b_1} / {b_2}

\Longrightarrow \frac{2a - 1}{3}  =  \frac{3}{b - 1}

(2a - 1)(b - 1) = 9 \\  \\ \Longrightarrow2ab - b - 2a +1  = 9 \\ \Longrightarrow \: b(2a - 1) =  \frac{8 + 2a}{2a - 1}  \:  \:  \:  \:  \: ...(1)

\Longrightarrow  {b_1} / {b_2} =  {c_1} / {c_2}

Put, value of b in equation 1 from equation 2

b =  \frac{8 + 2a}{2a - 1}  \\  \\ \Longrightarrow \:  \frac{11}{5}  =  \frac{8 + 2a}{2a - 1}  \\  \\ \Longrightarrow11(2a + 1) = 5(8 + 2a) \\  \\ \Longrightarrow22a - 11 = 40 + 10a \\  \\\Longrightarrow12a = 51 \\  \\  \Longrightarrow \: a =  \frac{51}{12}

Similar questions