Determine the volume of a conical tin having radius of the base as 30cm and its slant height as 50cm (useπ=3.14)
Answers
Answer:
Volume of the conical tin is 6280 cubic cm.
Step-by-step explanation:
Formula used:
1.Volume of cone cubic units
Let r, h and l be radius, height and slant height of the conical tin respectively.
Given:
Radius of the conical tin, r = 30 cm
Slant height of the conical tin, l=50 cm
Now,
Volume of the conical tin
Step-by-step explanation:
Volume of the conical tin is 6280 cubic cm.
Step-by-step explanation:
Formula used:
1.Volume of cone=\frac{1}{3}\:\pi\:r^2h=
3
1
πr
2
h cubic units
2.l^2=h^2+r^22.l
2
=h
2
+r
2
Let r, h and l be radius, height and slant height of the conical tin respectively.
Given:
Radius of the conical tin, r = 30 cm
Slant height of the conical tin, l=50 cm
\begin{gathered}l^2=h^2+r^2\\\\(50)^2=h^2+(30)^2\\\\2500=h^2+900\\\\h^2=2500-900\\\\h^2=1600\\\\h=\sqrt{1600}\\\\h=40\:cm\end{gathered}
l
2
=h
2
+r
2
(50)
2
=h
2
+(30)
2
2500=h
2
+900
h
2
=2500−900
h
2
=1600
h=
1600
h=40cm
Now,
Volume of the conical tin
\begin{gathered}=\frac{1}{3}\:\pi\:r^2h\\\\=\frac{1}{3}\:(3.14)\:(30)^2(40)\\\\=\frac{1}{3}\:(3.14)\:(30)^2(40)\\\\=\frac{1}{3}\:(3.14)\:(900)(40)\\\\=3.14*300*40\\\\=314*3*40\\\\=314*120\\\\=6280 \;cubic \:cm.\end{gathered}
=
3
1
πr
2
h
=
3
1
(3.14)(30)
2
(40)
=
3
1
(3.14)(30)
2
(40)
=
3
1
(3.14)(900)(40)
=3.14∗300∗40
=314∗3∗40
=314∗120
=6280cubiccm.