Math, asked by fighter84, 10 months ago

Determine whether the given quadratic equations have real roots and if so, find the roots.
√3x^2 + 10x - 8√3 = 0​

Answers

Answered by amansharma264
2

EXPLANATION.

  • GIVEN

√3x^2 + 10x - 8√3 quadratic equation have

real roots , then find Root's

solutions

√3x^2 + 10x - 8√3 = 0

D = 0

b^2 - 4ac = 0

(10)^2 - 4 ( √3)(-8√3) = 0

100 + 96 = 0

196

Therefore,

equation has real roots

    \bigstar\boxed{\large{\bold{x =  \frac{ - b \:  \pm \:  \sqrt{d}  }{2a}}}}

case = 1

x \:  =  \frac{ - b +  \sqrt{d} }{2a}

x \:  =  \frac{ - 10 +  \sqrt{196} }{2 \sqrt{3} }

x =  \frac{ - 10 + 14}{2 \sqrt{3} }

x =  \frac{4}{2 \sqrt{3} }

x =  \frac{2}{ \sqrt{3} }

case = 2

x =   \frac{ - b -  \sqrt{d} }{2a}

x =  \frac{ - 10 - 14}{2 \sqrt{3} }

x =  \frac{ - 24}{2 \sqrt{3} }

x =  \frac{ - 12}{ \sqrt{3} }

x =  \frac{2 \sqrt{3} }{ \sqrt{3} } = 2

Answered by gurparteekatwal9919
0

Determine whether the given quadratic equations have real roots and if so, find the roots.

√3x^2 + 10x - 8√3 = 0

Attachments:
Similar questions