Math, asked by Vikh950, 1 year ago

Determine whether the given set of points in each case are collinear or not.
(i) (7,–2),(5,1),(3,4) (ii) (–2, –8), (2,–3) (6,2)
(iii) (a,–2), (a,3), (a,0)

Answers

Answered by slicergiza
11

Answer:

(i) collinear

(ii) collinear

(ii) non collinear

Step-by-step explanation:

Since, three points (x_1, y_1), (x_2, y_2) and (x_3, y_3) are called col-linear, if,

x_1(y_2-y_3)+x_2(y_3-y_1) + x_3(y_1-y_2)=0

(i) x_1 = 7, y_1 = -2, x_2 = 5, y_2 = 1, x_3 = 3, y_3 = 4

Since,

7(1-4)+5(4+2) + 3(-2-1)=7(-3) + 5(6) + 3(-3) = -21 + 30 - 9 = 9 - 9=0

Thus,

(7,–2),(5,1) and (3,4) are col-linear.

(ii) x_1 = -2, y_1 = -8, x_2 = 2, y_2 = -3, x_3 = 6, y_3 = 2

Since,

-2(-3-2)+2(2+8) + 6(-8+3)=-2(-5) + 2(10) + 6(-5) = 10 + 20 - 30 = 30 - 30=0

Thus,

(–2, –8), (2,–3) and (6,2) are col-linear.

(i) x_1 = a, y_1 = -2, x_2 = a, y_2 = 3, x_3 = a, y_3 = 0

Since,

a(3-0)+a(0+3) + a(-2-3)=3a + 3a - 2a - 3a = a\neq 0

Thus,

(7,–2),(5,1) and (3,4) are not col-linear.

Answered by mysticd
4

Answer:

 i) Given \: points \: (7,-2),\:(5,1) \:and \: (3,4)

 Let \: A(7,-2) = (x_{1},y_{1}), \\B(5,1) = (x_{2},y_{2}),\\C(3,4) = (x_{3},y_{3})

 \boxed { \pink {Area \triangle =\frac{1}{2} | x_{1}(y_{2}-y_{3})+x_{2}(y_{3} - y_{1})+x_{3}(y_{1} - y_{2})|\:}}

 = \frac{1}{2} | 7[1-4]+5[4-(-2)]+3[-2-1]|

= \frac{1}{2} | 7\times (-3) + 5\times 6+3\times (-3)|

 = \frac{1}{2} | -21 + 30 -9|

 = \frac{1}{2} | -30 + 30 |

 = \frac{1}{2} \times 0

 = 0

Therefore.,

 \green { Area \: of \: triangle = 0 }

 \green { A,B \: and \: C \: are \: collinear}

 ii) Given \: points \: (-2,-3),\:(2,-3) \:and \: (6,2)

 Let \: A(-2,-3) = (x_{1},y_{1}), \\B(2,-3) = (x_{2},y_{2}),\\C(6,2) = (x_{3},y_{3})

 = \frac{1}{2} | (-2)[-3-2]+2[2-(-8)]+6[-8-(-3)]|

= \frac{1}{2} | (-2)\times (-5) + 2\times 10+6\times (-5)|

 = \frac{1}{2} | 10 + 20 -30|

 = \frac{1}{2} | -30 + 30 |

 = \frac{1}{2} \times 0

 = 0

Therefore.,

 \green { Area \: of \: triangle = 0 }

 \green { A,B \: and \: C \: are \: collinear}

 iii) Given \: points \: (a,-2),\:(a,3) \:and \: (a,0)

 Let \: A(a,-2) = (x_{1},y_{1}), \\B(a,3) = (x_{2},y_{2}),\\C(a,0) = (x_{3},y_{3})

 = \frac{1}{2} | a[3-0]+a[0-(-2)]+a[-2-3]|

= \frac{1}{2} | a\times 3+ a\times 2+a\times (-5)|

 = \frac{1}{2} | 3a + 3a -5a|

 = \frac{1}{2} | 6a -5a |

 = \frac{1}{2} \times a

 ≠0

Therefore.,

 \green { Area \: of \: triangle ≠ 0 }

 \green { A,B \: and \: C \: are \: non- collinear}

•••♪

Similar questions