Determine whether the points (1,-3) &c(-4,7)are follinear OR mothers
Answers
Answer:
Determine whether the points A(1 , -3 ) B(2, -5) and C(-4 , 7) are volunteering or not
..............(1)
............(2)
.......(3)
Now,
Adding (1) and (3)
d(A, B) + d(A ,C) =
Point A, B and C are collinear.
Answer:
Determine whether the points A(1 , -3 ) B(2, -5) and C(-4 , 7) are volunteering or not
\bf\red{\underline{\underline{Solution\mapsto :}}}
Solution↦:
\bf {by\: distant \: formula}bydistantformula
\bf{d(A ,B) = \sqrt{(2 - 1)^2+ [(- 5 - (-3)]^2}}d(A,B)=
(2−1)
2
+[(−5−(−3)]
2
\bf\implies\sqrt{1^2 + ( - 5 + 3)^2}⟹
1
2
+(−5+3)
2
\bf\implies\sqrt{1 + ( - 2)^2}⟹
1+(−2)
2
\bf\implies\sqrt{1 + 4}⟹
1+4
\bf\implies\sqrt{5}⟹
5
..............(1)
\bf{d(B ,C) = \sqrt{( - 4 - 2)^2 + 1 [7 - ( - 5 )]^2}}d(B,C)=
(−4−2)
2
+1[7−(−5)]
2
\bf\implies\sqrt{( -6 )^2 + (12)^2}⟹
(−6)
2
+(12)
2
\bf\implies\sqrt{36 + 144}⟹
36+144
\bf\implies\sqrt{180}⟹
180
\bf\implies\sqrt{2\times{2\times{3\times{3\times5}}}}⟹
2×2×3×3×5
\bf\implies{6\sqrt{5}}⟹6
5
............(2)
\bf{d( A, C) = \sqrt{(- 4 - 1 )^2 +[ 7 - ( - 3 )]^2}}d(A,C)=
(−4−1)
2
+[7−(−3)]
2
\bf\implies\sqrt{( - 5 )^2 + (10)^2}⟹
(−5)
2
+(10)
2
\bf\implies\sqrt{25 + 100}= \sqrt{125}⟹
25+100
=
125
\bf\implies\sqrt{5\times{5\times{\times5}}}⟹
5×5××5
\bf\implies{5\sqrt{5}}⟹5
5
.......(3)
Now,
Adding (1) and (3)
d(A, B) + d(A ,C) = \bf\sqrt{5} + 5\sqrt{5} = 6 \sqrt{5}
5
+5
5
=6
5
\bf{d(A,B) +d(A,C) = d(B,C)}d(A,B)+d(A,C)=d(B,C)
Point A, B and C are collinear