Math, asked by AbiramRavi, 6 months ago

diameter of a base of a cone is 10.5 cm and its slant height is 10 cm. find its csa and tsa

Answers

Answered by sonisiddharth751
2

We have :-

  • Diameter of the base of Cone = 10.5 cm . ∴ Radius = 10.5/2 cm .
  • Slant height of Cone = 10 cm .

To find :-

  • find T.S.A (Total Surface Area) and C.S.A (Curved Surface Area ) of the Cone .

Formula used :-

  • C.S.A of Cone = π.r.l
  • T.S.A of Cone = πr ( l + 2r )

Solution :-

 \\

C.S.A of Cone :-

C.S.A of Cone :- π.r.l

  \sf \: C.S.A \:  of  \: Cone \:  =  \dfrac{22}{7}  \times   \dfrac{10.5}{2}  \times 10 \\  \\ \sf \: C.S.A \:  of  \: Cone \:  =  \dfrac{ \cancel{22}}{ \cancel7}  \times   \dfrac{ \cancel{10.5}}{ \cancel2}  \times 10 \\  \\  \sf \: C.S.A \:  of  \: Cone \:  = 11 \times 1.5 \times 10 \\  \\ \sf \: C.S.A \:  of  \: Cone \:  =1 65 \:  {cm}^{2}  \\

hence, C.S.A of the Cone = 165 cm² .

 \\  \\

Now, T.S.A of Cone :- π.r ( l + r )

  \sf \: T.S.A \:  of  \: Cone =  \dfrac{22}{7}  \times  \dfrac{10.5}{2} \bigg (10 +  \dfrac{10.5}{2}  \bigg) \\  \\  \sf \: T.S.A \:  of  \: Cone =  \dfrac{\cancel{22}}{\cancel7}  \times  \dfrac{ \cancel{10.5}}{\cancel2} \bigg (10 +  \dfrac{10.5}{2}  \bigg) \\  \\\sf \: T.S.A \:  of  \: Cone = 11 \times 1.5  \times  \dfrac{30.5}{2}\\  \\ \sf \: T.S.A \:  of  \: Cone = 11 \times 1.5 \times 15.25 \\  \\ \sf \: T.S.A \:  of  \: Cone = 251.625 \:  {cm}^{2}  \\

Hence, T.S.A of Cone = 251.625 cm² .

 \\  \\

the required C.S.A and T.S.A of the Cone is 165 cm² and 251.625 cm² respectively .

 \\

Similar questions