Diameter of a circle is 26 cm and the length of chord of a circle is 24 cm. find the distance of the chord from the centre.
Answers
Answered by
49
aloha user!!
----------------
we know a radius makes 90° angle on any chord and bisects it.
so,
radii=> 26/ 2 => 13 cm ( H )
base=> 24/ 2 => 12 cm ( B )
p= ?
H² = B² + P²
13² = 12² + P²
169 = 144 + P²
P²= 169 - 144
P² = 25
P= √ 25
P= 5cm
The distance of chord from the centre is 5cm.
-------------------------------------------------------------------------------------
hope it helps :^)
----------------
we know a radius makes 90° angle on any chord and bisects it.
so,
radii=> 26/ 2 => 13 cm ( H )
base=> 24/ 2 => 12 cm ( B )
p= ?
H² = B² + P²
13² = 12² + P²
169 = 144 + P²
P²= 169 - 144
P² = 25
P= √ 25
P= 5cm
The distance of chord from the centre is 5cm.
-------------------------------------------------------------------------------------
hope it helps :^)
shubu10:
yes baby
Answered by
49
According to the ques the figure would be like so as attached.
Then OA = OB ⇒ 13 cm ; AM = BM ⇒ 12 cm
______________________________________________________
Using Pythagoras theorem,
OA² = OM² + AM²
(13)² = OM² + (12)²
OM² = 169 - 144
OM = √25 ⇒ 5 cm.
______________________________________________________
Hence the distance from centre to the chord is 5 cm.
______________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Then OA = OB ⇒ 13 cm ; AM = BM ⇒ 12 cm
______________________________________________________
Using Pythagoras theorem,
OA² = OM² + AM²
(13)² = OM² + (12)²
OM² = 169 - 144
OM = √25 ⇒ 5 cm.
______________________________________________________
Hence the distance from centre to the chord is 5 cm.
______________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Attachments:
Similar questions