Math, asked by manavchhadwa, 2 months ago

Diameter of a circular garden is 9.8 m. Find its area and circumference.​

Answers

Answered by Anonymous
11

Answer :

  • Area is 75.46 m²
  • Circumference is 30.8 m

Given :

  • Diameter of circular garden is 9.8m

To find :

  • Area and Circumference

Solution :

  • Diameter = 9.8m

First we need to find radius ,

As we know that,

  • Radius = Diameter/2

》Radius = Diameter/2

》9.8/2

》98/20

》 49/10 m

Hence, Radius is 49/10 m

Now we have to find the area

As we know that,

  • Area of circle = πr²

where, r is radius

》 πr²

》22/7 × (49/10)²

》22/7 × 49/10 × 49/10

》22/1 × 7/10 × 49/10

》154 × 49 / 100

》7546/100

》75.46 m²

Hence, Area is 75.46 m²

Now we have to find the circumference :

As we know that ,

  • Circumference = 2πr

where r is radius

2πr

》2 × 22/7 × 49/10

》2 × 22 × 7/10

》44 × 7/10

》30.8m

Hence, Circumference is 30.8m

Answered by ʝεɳყ
22

Given :

  • Diameter of a circular garden is 9.8 m.

To Find :

  • Area
  • Circumference

Solution :

★ Area :

To find area, First we've to find Radius.

 \tt \longrightarrow \: diameter \:  =  \: 9.8m \\  \\ \tt \longrightarrow \:radius (r)\: =  \: \frac{diameter}{2}  \\  \\ \tt \longrightarrow \:radius (r)\: =  \:\frac{9.8}{2} \\  \\ \tt \longrightarrow \:radius (r)\: =  \:\frac{98}{20} \\  \\ \tt \longrightarrow \:radius (r)\: =  \:\frac{49}{10}m

Radius =  \dfrac{49}{10}

So now we've π =  \dfrac{22}{10} ,r = \dfrac{49}{10}

By using formula,

 \tt \longrightarrow \: area \: of \: circle \:  = \: pi {r}^{2}  \\  \\  \tt \longrightarrow \: area \: of \: circle \:  = \: \frac{22}{7}  \times  ({ \frac{49}{10} )}^{2}  \\  \\  \tt \longrightarrow \: area \: of \: circle \:  = \:  \frac{22}{7}  \times \frac{49}{10}  \times \frac{49}{10}   \\  \\ \tt \longrightarrow \: area \: of \: circle \:  = \: \frac{22}{1}  \times  \frac{7}{10}  \times  \frac{49}{10}  \\  \\ \tt \longrightarrow \: area \: of \: circle \:  = \: \frac{159 \times 49}{100}  \\  \\ \tt \longrightarrow \: area \: of \: circle \:  = \: \frac{7546}{100}  \\  \\ \tt \longrightarrow \: area \: of \: circle \:  = \:75.46 {m}^{2}

•°• Area = 75.46²

__________________________

Circumference :

So now we've π =  \dfrac{22}{10}, r = \dfrac{49}{10}

By using formula,

 \tt \longrightarrow \: circumference \:  =  \: 2\pi  \\  \\     \tt \longrightarrow \: circumference \:  =  \:2 \times  \frac{22}{7}  \times  \frac{49}{10}   \\  \\ \tt \longrightarrow \: circumference \:  =  \:2 \times  \frac{22}{1}  \times   \frac{7}{10}  \\  \\ \tt \longrightarrow \: circumference \:  =  \:  \frac{2 \times 22 \times 7}{10}  \\  \\ \tt \longrightarrow \: circumference \:  =  \:  \frac{308}{10} \\  \\ \tt \longrightarrow \: circumference \:  =  \:30.8m

•°• Circumference = 30.8m

________________________

Hence,

  • Area = 75.46²
  • Circumference = 30.8m
Similar questions