Math, asked by itsjannatjubair, 11 months ago

Diameter of cylinder A is 7 cm, and the height is 14 cm. Diameter of cylinder B is 14 cm and height is 7 cm. Without doing any calculations
can suggest whose volume is greater? Verify it by finding the
me of both the cylinders. Check whether the cylinder with greater volume also has greater surface area?​

Attachments:

Answers

Answered by Aɾꜱɦ
3

Answer:

the cylinder of greater capacity has more surface area.

\bold\red{ Step\: By \:Step \: Explanation \: }

\large\bold\red{ volume \: of \:cylinder \: A :-}

Radius(r) =  \frac{7}{2}  CM, hieght (h) =14cm

<font color =pink>

.. volume of cylinder A:- A=πr2h

= 22/7 ×(7/2)^2 ×14cm^3

=22/7×7/2×7/2×14cm^3

=11×7×7cm^3 =539cm^3

 \rule{300}{2}

<font color =green>

Volume of cylinder B

Radius(a) = 14/2 =7cm hieght (h) =7cm

.. volume of cylinder B =π2^2h

= 22/7×(7)^2×7cm=22/7 ×7×7×7cm^3

=22×7×7=1078cm^3

thus, cylinder B has greater volume

Now,

 \rule{300}{2}

<font color =green >

Surface area of cylinder A=2×π×(r+h)

=2×22/7×7/2×[7/2+14 ]cm^2

= 22×35/2 cm^2=385cm^2

 \rule{300}{2}

<font color =red>

surface area of cylinder B =2πrh(r+h)

=2×22/7×7×[7+7]cm^2

=2 ×22 ×[14]cm^2=616cm^2

(hence verified)

thus, the cylinder of greater capacity has (more) surface area.

Learn more:

https://brainly.in/question/14964783

 \rule{300}{2}

https://brainly.in/question/14964

 \rule{300}{2}

https://brainly.in/question/14985356

 \rule{300}{2}

https://brainly.in/question/14909368

#answerwithquality #bal

Answered by Rppvian2019
1

₳₦$₩ɆɌ:

----------------------------------------------------------------------

volumeofcylinderA:−

Radius(r) = \frac{7}{2}27 CM, hieght (h) =14cm

.•. volume of cylinder A:- A=πr2h

= 22/7 ×(7/2)^2 ×14cm^3

=22/7×7/2×7/2×14cm^3

=11×7×7cm^3 =539cm^3

----------------------------------------------------------------------

Volume of cylinder B

Radius(a) = 14/2 =7cm hieght (h) =7cm

.•. volume of cylinder B =π2^2h

= 22/7×(7)^2×7cm=22/7 ×7×7×7cm^3

=22×7×7=1078cm^3

thus, cylinder B has greater volume

Now,

surface area of cylinder B =2πrh(r+h)

=2×22/7×7×[7+7]cm^2

=2 ×22 ×[14]cm^2=616cm^2

(hence verified)

thus, the cylinder of greater capacity has (more) surface area.

hpe \: it \: help \: you

Similar questions