Math, asked by TbiaSamishta, 1 year ago

Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area.

Answers

Answered by iHelper
32
Hello!

• Radius, r = \bf{5.25\: cm}
• Slant height, l = \bf{10\:cm}

Then,

\underline{\bf{Curved \:surface\:area\:of\:Cone}} :

\sf πrl \\ \\ \implies \dfrac{22}{7} \times 5.25 \times 10 \\ \\ \implies \dfrac{1125}{7} \implies \boxed{\red{\bf{165\:cm^{2}}}}

Cheers!
Answered by sk98764189
15

Answer:

165\ cm^{2}

Step-by-step explanation:

In the question, diameter (d) of the base of a cone = 10.5 cm

slant height (l) of cone = 10 cm

Radius (r) of the base of cone = \frac{d}{2}

                                                  =\frac{10.5}{2}

                                                  = 5.25 cm {since we know that, d = 2r}

As we know that,

Curved surface area of cone = πrl

                                                = (\frac{22}{7}\times5.25\times10) cm^2

                                                =  (\frac{22}{7}\times\frac{525}{100}\times10) cm^2

                                                =  (22\times\frac{75}{100}\times10) cm^2

                                                = \frac{16500}{100}

                                                = 165\ cm^{2}

Hence the curved surface area of cone is 165\ cm^{2}.

Similar questions