Math, asked by TbiaSamishta, 1 year ago

In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm. Find the total radiating surface in the system.

Answers

Answered by iHelper
43
Hello!

• Height, h = \bf{28 \:m}

• Radius, r = \dfrac{5}{2\times100} = \bf{\dfrac{1}{40} \: m}

Then,

\underline{\bf{Total\:radiating \:surface}} :

\sf 2πrh \\ \\ \implies 2 \times \dfrac{22}{7} \times \dfrac{1}{40} \times 28 \\ \\ \implies \dfrac{1232}{280} \implies \boxed{\red{\bf{4.4\:m^{2}}}}

Cheers!
Answered by Anonymous
43

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Length of Cylindrical heating system (h)

= 28m

\textbf{\underline{Convert\;it\;into\;cm}}

[1m = 100 cm]

= 28 × 100

= 2800 cm

Also (Given)

\textbf{\underline{Diameter\;of\;Pipe = 5cm}}

Hence,

\tt{\rightarrow Radius=\dfrac{Diameter}{2}}

\tt{\rightarrow Radius=\dfrac{5}{2}}

Now,

Curved Surface area = 2πrh

\tt{\rightarrow 2\times\dfrac{22}{7}\times\dfrac{5}{2}\times 2800}

= 110 × 400

= 44000 cm²

\textbf{\underline{Convert\;it\;into\;metre\;square}}

\tt{\rightarrow\dfrac{44000}{100\times 100}m^2}

= 4.4 m²

Hence we get :-

Total radiating surface of the system = 4.4 m²

Similar questions