Biology, asked by anujkubawat, 2 months ago

diff between asexual and sexual reproduction? in plants..​

Answers

Answered by pooja9070
1

Explanation:

Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from the parent or parents. Asexual reproduction produces new individuals without the fusion of gametes, genetically identical to the parent plants and each other, except when mutations occur.

Answered by singhkarishma882
1

\huge\underline\mathfrak\color {aqua}Answer:

Asexual Reproduction :

Asexual reproduction is a type of reproduction which does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from a single cell or from a multicellular organism inherit the genes of that parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many multicellular animals, plants and fungi can also reproduce asexually. Examples of asexual reproduction are:Budding,Spore formation,etc.

Sexual Reproduction :

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete (such as a sperm or egg cell) with a single set of chromosomes (haploid) combines with another to produce an organism composed of cells with two sets of chromosomes (diploid).[1] Sexual reproduction is the most common life cycle in multicellular eukaryotes, such as animals, fungi and plants. Sexual reproduction does not occur in prokaryotes (organisms without cell nuclei), but they have processes with similar effects such as bacterial conjugation, transformation and transduction, which may have been precursors to sexual reproduction in early eukaryotes.

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete (such as a sperm or egg cell) with a single set of chromosomes (haploid) combines with another to produce an organism composed of cells with two sets of chromosomes (diploid).[1] Sexual reproduction is the most common life cycle in multicellular eukaryotes, such as animals, fungi and plants. Sexual reproduction does not occur in prokaryotes (organisms without cell nuclei), but they have processes with similar effects such as bacterial conjugation, transformation and transduction, which may have been precursors to sexual reproduction in early eukaryotes.In the production of sex cells in eukaryotes, diploid mother cells divide to produce haploid cells known as gametes in a process called meiosis that involves genetic recombination. The homologous chromosomes pair up so that their DNA sequences are aligned with each other, and this is followed by exchange of genetic information between them. Two rounds of cell division then produce four haploid gametes, each with half the number of chromosomes from each parent cell, but with the genetic information in the parental chromosomes recombined. Two haploid gametes combine into one diploid cell known as a zygote in a process called fertilisation. The zygote incorporates genetic material from both gametes. Multiple cell divisions, without change of the number of chromosomes, then form a multicellular diploid phase or generation.

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete (such as a sperm or egg cell) with a single set of chromosomes (haploid) combines with another to produce an organism composed of cells with two sets of chromosomes (diploid).[1] Sexual reproduction is the most common life cycle in multicellular eukaryotes, such as animals, fungi and plants. Sexual reproduction does not occur in prokaryotes (organisms without cell nuclei), but they have processes with similar effects such as bacterial conjugation, transformation and transduction, which may have been precursors to sexual reproduction in early eukaryotes.In the production of sex cells in eukaryotes, diploid mother cells divide to produce haploid cells known as gametes in a process called meiosis that involves genetic recombination. The homologous chromosomes pair up so that their DNA sequences are aligned with each other, and this is followed by exchange of genetic information between them. Two rounds of cell division then produce four haploid gametes, each with half the number of chromosomes from each parent cell, but with the genetic information in the parental chromosomes recombined. Two haploid gametes combine into one diploid cell known as a zygote in a process called fertilisation. The zygote incorporates genetic material from both gametes. Multiple cell divisions, without change of the number of chromosomes, then form a multicellular diploid phase or generation.In human reproduction, each cell contains 46 chromosomes in 23 pairs. Meiosis in the parents' gonads produces gametes that each contain only 23 chromosomes that are genetic recombinants of the DNA sequences contained in the parental chromosomes. When the nuclei of the gametes come together to form a fertilized egg or zygote, each cell of the resulting child will have 23 chromosomes from each parent, or 46 in total.

Similar questions