Math, asked by manishchandra339, 5 months ago

Difference of C. I. & S. I. on Rs.1000 at 10% p. a. for 2 years is Rs​

Answers

Answered by MoodyCloud
14
  • Difference of C.I and S.I is Rs 10 .

Step-by-step explanation:

Given:-

  • Principal is Rs 1000 .
  • Rate of interest is 10% .
  • Time period is 2 years.

To find:-

  • Difference of C.I and S.I .[Compound interest and simple interest]

Solution:-

  • For difference first we need to find C.I and S.I.

So,

 \boxed{\sf \bold{\star \: S.I = \dfrac{Principal \times Rate \times time} {100} }}

Put the values in formula :

 \sf \longrightarrow S.I =  \dfrac{10 \cancel{00} \times 10 \times 2}{1 \cancel{00}} \\  \\

\sf \longrightarrow S.I = 100 \times 2 \\  \\

\longrightarrow  \pink{ \boxed{ \sf \bold{S.I = 200}} \star} \\  \\

S.I is Rs 200

  • Here, Work is going annually. We will use Compounded annually formula for Amount.

Now,

C.I = Amount - Principal

Or,

\boxed{\sf \bold{\star \: C.I =  \bigg[P \bigg( 1 + \dfrac{r}{100} \bigg) ^{n}  \bigg] - P}}

Where,

  • n is time period, P is principal and r is rate of interest.

Put values in formula :

\sf \longrightarrow C.I =  \bigg[1000 \times  \bigg(1 +  \dfrac{10}{100} \bigg)^{2}  \bigg ]  - 1000 \\  \\

\sf \longrightarrow C.I =  \bigg[ 1000 \times  \bigg( \dfrac{100 + 10}{100}  \bigg)^{2}  \bigg ]  - 1000 \\  \\

\sf \longrightarrow C.I =  \bigg[ 1000 \times \bigg( \dfrac{110}{100}  \bigg) ^{2}  \bigg ]  - 1000 \\  \\

\sf \longrightarrow C.I = \bigg[10  \cancel{00 }\times  \dfrac{110}{1 \cancel{00}}  \times  \dfrac{110}{100} \bigg]  - 1000 \\  \\

\sf \longrightarrow  C.I =  \bigg[  \cancel{ \dfrac{12100}{100} } \bigg]  - 1000 \\  \\

\sf \longrightarrow C.I = 1210 - 1000 \\  \\

 \longrightarrow  \purple{ \boxed{ \sf \bold{C.I =210}} \star} \\  \\

C.I is Rs 210 .

★ Difference = C.I - S.I

 \sf \longrightarrow 210 - 200 \\ \\

 \longrightarrow \red{\boxed{\sf \bold{10}}\bigstar} \\ \\

Therefore,

Difference of C.I and S.I is Rs 10.

Answered by Anonymous
5

Answer:

Given :-

  • Principal is Rs 1000 .
  • Rate of interest is 10% .
  • Time period is 2 years.

To Find :-

Difference between CI and SI

Solution :-

As we know that

 \boxed { \bf \: simple \: intrest \:  =  \frac{p \times \: r \:  \times t }{100} }

 \sf \: simple \: intrest \:  =  \dfrac{1000 \times 10 \times 2}{100}

 \sf \: simple \: intrest \:  =  \dfrac{20000}{100}

  \sf \: simple \: intrest \:  =  \cancel \dfrac{20000}{100}

 \sf \: simple \: intrest \:  = 200

 \huge \sf \: C.I=[P(1+ \frac{r}{100} ) {}^{2} ]−P

 \sf \: CI  =   [1000(1 +  \dfrac{10}{100})  {}^{2}] - 1000

 \sf \: CI \:  =  [1000( \frac{100 + 10}{100}) {}^{2}  -] 1000

 \sf \: CI \:  =  [ 1000 \times ( \frac{110}{100} ) {}^{2} ] - 1000

\sf \: CI \:  =  [1000 \times  \dfrac{110}{100}  \times  \dfrac{110}{100} ] - 1000

 \sf \: CI \:  =   \cancel\dfrac{12100}{100}  - 1000

 \sf \: CI = 1210 - 1000

 \sf \: CI = 210

Now,

Finding Difference

 \sf \: Difference \:  = 210 - 200

 \sf \: Difference = 10

Similar questions