Math, asked by Anonymous, 4 days ago

Differential calculus: limits

\rm\lim\limits_{h\to \infty} \left\{\dfrac{1}{h^3\sqrt{8+h}}-\dfrac{1}{2h}\right\}

Answers

Answered by mathdude500
7

Appropriate Question :-

Evaluate the following :-

\rm\lim\limits_{h\to 0} \left\{\dfrac{1}{h \:  \sqrt[3]{8 + h} }-\dfrac{1}{2h}\right\} \\

\large\underline{\sf{Solution-}}

Given expression is

\rm\lim\limits_{h\to 0} \left\{\dfrac{1}{h \:  \sqrt[3]{8 + h} }-\dfrac{1}{2h}\right\} \\

can be further rewritten as

\rm \: =  \:\rm\lim\limits_{h\to 0} \left\{\dfrac{2 -  \sqrt[3]{8 + h} }{2 \: h \:  \sqrt[3]{8 + h} }\right\} \\

\rm \: =  \:\dfrac{1}{2 \times  \sqrt[3]{8} }  \: \rm\lim\limits_{h\to 0} \left\{\dfrac{2 -  \sqrt[3]{8 + h} }{\: h \:   }\right\} \\

\rm \: =  \:\dfrac{1}{2 \times  2}  \: \rm\lim\limits_{h\to 0} \left\{\dfrac{ \sqrt[3]{8}  -  \sqrt[3]{8 + h} }{\: h \:   }\right\} \\

We know,

\boxed{\sf{  \:\rm \: x - y =  \frac{ {x}^{3} -  {y}^{3}  }{ {x}^{2} + xy +  {y}^{2}  }  \:  \: }} \\

So, using this result in numerator, we get

\rm \: =  \: \dfrac{1}{4}  \:\lim\limits_{h\to 0} \dfrac{8 - (8 + h)}{h\bigg[ {( \sqrt[3]{8 + h} )}^{2}  +  \sqrt[3]{8 + h}  \sqrt[3]{8}  +  {( \sqrt[3]{8} )}^{2} \bigg]}

\rm \: =  \: \dfrac{1}{4}  \:\lim\limits_{h\to 0} \dfrac{8 - 8  -  h}{h\bigg[ {( \sqrt[3]{8 + h} )}^{2}  +  \sqrt[3]{8 + h}  \sqrt[3]{8}  +  {( \sqrt[3]{8} )}^{2} \bigg]}

\rm \: =  \: \dfrac{1}{4}  \:\lim\limits_{h\to 0} \dfrac{-  h}{h\bigg[ {( \sqrt[3]{8 + h} )}^{2}  +  \sqrt[3]{8 + h}  \sqrt[3]{8}  +  {( \sqrt[3]{8} )}^{2} \bigg]}

\rm \: =  \: -  \:  \dfrac{1}{4}  \:\lim\limits_{h\to 0} \dfrac{1}{\bigg[ {( \sqrt[3]{8 + h} )}^{2}  +  \sqrt[3]{8 + h}  \sqrt[3]{8}  +  {( \sqrt[3]{8} )}^{2} \bigg]}

\rm \: =  \: -  \:  \dfrac{1}{4}   \times  \dfrac{1}{\bigg[ {( \sqrt[3]{8 + 0} )}^{2}  +  \sqrt[3]{8 + 0}  \sqrt[3]{8}  +  4 \bigg]}

\rm \: =  \: -  \:  \dfrac{1}{4}   \times  \dfrac{1}{\bigg[ {( \sqrt[3]{8} )}^{2}  +  \sqrt[3]{8}  \times  2  +  4 \bigg]}

\rm \: =  \: -  \:  \dfrac{1}{4}   \times  \dfrac{1}{\bigg[ {( 2 )}^{2}  +  2  \times  2  +  4 \bigg]}

\rm \: =  \: -  \:  \dfrac{1}{4}   \times  \dfrac{1}{\bigg[ 4 + 4 +  4 \bigg]}

\rm \: =  \: -  \:  \dfrac{1}{4}   \times  \dfrac{1}{12}

\rm \: =  \: -  \:  \dfrac{1}{48}  \\

Hence,

 \\ \rm\implies \:\boxed{\sf{  \:\rm\lim\limits_{h\to 0} \left\{\dfrac{1}{h \:  \sqrt[3]{8 + h} }-\dfrac{1}{2h}\right\}  =  -  \frac{1}{48} \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\sf{  \:\rm \: \lim\limits_{x\to 0} \frac{sinx}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \lim\limits_{x\to 0} \frac{tanx}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \lim\limits_{x\to 0} \frac{log(1 + x)}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \lim\limits_{x\to 0} \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \:\rm \: \lim\limits_{x\to 0} \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \:  \: }} \\

Similar questions