Math, asked by smeshram123ytl, 8 months ago

differentiat x^x w.r to x^ sinx​

Answers

Answered by SrijanShrivastava
0

The derivative of xˣ with respect to x is

xˣ ( 1 + ln(x))

 \frac{d}{dx} ( {x}^{x} ) = \frac{d}{dx} ( {e}^{x. ln(x) } )

 =  \frac{d}{du} ( {e}^{u} ). \:  \frac{d}{dx} (x. ln(x) )

 =  { {x} }^{x}( x. \frac{1}{x}  +  ln(x) )

 =  {x}^{ {x} } (1 +  ln(x) )

  \frac{d}{dx} ({x}^{x}) =  {x}^{ {x} }  +  {x}^{x} . ln(x)

Similar questions