Math, asked by shubham1726u, 1 year ago

differentiate√1-x^2/√1+x^2​

Answers

Answered by Anonymous
21

Step-by-step explanation:

y =   \frac{ \sqrt{1 -  {x}^{2} } }{ \sqrt{1  +  {x}^{2} } }

Differentiate the function wrt x

 \frac{dy}{dx}  =  \frac{d}{dx} ( \frac{ \sqrt{1 -  {x}^{2} } }{ \sqrt{1 +  {x}^{2} } } )

 \frac{dy}{dx}  = ( \frac{ (\sqrt{1 +  {x}^{2}  }  \times  \frac{1}{ \sqrt{1 -  {x}^{2} }  }  \times (0 - 2x)) - {} {} {( \sqrt{1  -{x}^{2}}  )  \frac{1}{( \sqrt{1  + {x}^{2} )  } }  \times (0  + 2x)} )}  {( { \sqrt{1 +  {x}^{2} }) }^{2}  }

 =  \frac{ \frac{ - 2x \sqrt{1 +  {x}^{2} } }{2 \sqrt{1 -  {x}^{2} } } -  \frac{2x \sqrt{1 -  {x}^{2} } }{2 \sqrt{1 +  {x}^{2} } }  }{ ({ \sqrt{(1 +  {x}^{2} } )}^{2} }

 =    \frac{( \frac{1}{( \sqrt{1 +  {x}^{2} } ) \times  \sqrt{1 -  {x}^{2} } )}) \times (  - x \sqrt{1 +  {x}^{2} } ( \sqrt{1 +  {x}^{2})  }  - x \sqrt{1 -  {x}^{2} } ( \sqrt{1 -  {x}^{2}))}) }{( { \sqrt{(1 +  {x}^{2} }) }^{2} }

 =  \frac{  - {( \sqrt{1 +  {x}^{2} } ) }^{2}  - ( { \sqrt{1  -   {x}^{2} )} }^{2} }{ \sqrt{(1 -  {x}^{4}) } (   { \sqrt{1 +  {x}^{2} )} }^{2}  }

 =  \frac{ - 1 -  {x}^{2} - 1 +  {x}^{2}  }{ \sqrt{(1 -  {x}^{4} )} (1 +  {x}^{2} )}

 =  \frac{ - 2}{ \sqrt{(1 -  {x}^{4} )} (1 +  {x}^{2} )}

  \frac{dy}{dx} =  \frac{ - 2}{ \sqrt{(1 -  {x}^{4} )} (1 +  {x}^{2} )}

Answered by BrainlyDr
0

Answer:-

Given in the attachment

Attachments:
Similar questions