Math, asked by kuvambhutani1612, 23 days ago

Differentiate 2^2^2^x
Pls only students who passed 11th (PCM) answer it.

Answers

Answered by 27crapedd
0

Answer:

2

1

+

2

x

ln

2

Step-by-step explanation:

Answered by mathdude500
3

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:Let \: y =  {2}^{ {2}^{ {2}^{x} } }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: y = \dfrac{d}{dx} {2}^{ \red{ {2}^{ {2}^{x} }} }

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } } log(2) \dfrac{d}{dx} {2}^{ \red{ {2}^{x}} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:  \dfrac{d}{dx} {a}^{x} =  {a}^{x} log(a) \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } } log(2)  {2}^{{ {2}^{x}} } log(2)\dfrac{d}{dx} {2}^{x}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } }{2}^{{ {2}^{x}} }  {(log2)}^{2} \dfrac{d}{dx} {2}^{x}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } } \: {2}^{{ {2}^{x}} }  \:  {(log2)}^{2} \: {2}^{x}log2

\bf :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } } \: {2}^{{ {2}^{x}} } \:  {2}^{x}   \:  {(log2)}^{3}

Alternative Method :-

\rm :\longmapsto\:Let \: y =  {2}^{ {2}^{ {2}^{x} } }

On taking log both sides, we get

\rm :\longmapsto\:log \: y =  log \bigg({2}^{ {2}^{ {2}^{x} } } \bigg)

\bf :\longmapsto\:logy =  {2}^{ {2}^{x} } log(2)   -  -  - (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: log( {x}^{y} ) = ylogx \bigg \}}

Again on taking log both sides, we get

\rm :\longmapsto\:log(logy) = log \bigg({2}^{ {2}^{x} } log(2)  \bigg)

\rm :\longmapsto\:log(logy) =  {2}^{x}log2 + log(log2)

 \:  \:  \  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: log( {x}^{y} ) = ylogx \bigg \}} \\  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:  log(xy) = logx + logy\bigg \}}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}log(logy) =  \dfrac{d}{dx} \bigg({2}^{x}log2 + log(log2) \bigg)

\rm :\longmapsto\:\dfrac{1}{logy} \dfrac{d}{dx}logy =  \dfrac{d}{dx} {2}^{x}log2 + \dfrac{d}{dx}log(log2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v \bigg \}}

\rm :\longmapsto\:\dfrac{1}{logy} \: \dfrac{1}{y}   \: \dfrac{d}{dx}y =  log2 \: \dfrac{d}{dx} {2}^{x} + 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:\dfrac{d}{dx}k = 0  \bigg \}}

\rm :\longmapsto\:\dfrac{1}{logy} \: \dfrac{1}{y}   \: \dfrac{dy}{dx}=  log2 \:  ({2}^{x}log2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:  \dfrac{d}{dx} {a}^{x} =  {a}^{x} log(a) \bigg \}}

\rm :\longmapsto\:\dfrac{1}{logy} \: \dfrac{1}{y}   \: \dfrac{dy}{dx}=   \:  {2}^{x} {(log2)}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx} = y \: logy \:  {2}^{x} \: {(log2)}^{2}

\rm :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } }  \:  {2}^{ {2}^{x} } \: log2 \:  {2}^{x} \: {(log2)}^{2}

\bf :\longmapsto\:\dfrac{dy}{dx} =  {2}^{ {2}^{ {2}^{x} } }  \:  {2}^{ {2}^{x} }  \:  {2}^{x} \: {(log2)}^{3}

Additional Information :-

\rm :\longmapsto\:\dfrac{d}{dx}x = 1

\rm :\longmapsto\:\dfrac{d}{dx}k = 0

\rm :\longmapsto\:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}

\rm :\longmapsto\:\dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)

\rm :\longmapsto\:\dfrac{d}{dx} {e}^{x}  =  {e}^{x}

\rm :\longmapsto\:\dfrac{d}{dx}logx = \dfrac{1}{x}

\rm :\longmapsto\:\dfrac{d}{dx} log_{a}(x)  = \dfrac{1}{x \: loga}  \:  \:  \: where \: a > 0

\rm :\longmapsto\:\dfrac{d}{dx}sinx = cosx

\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx

\rm :\longmapsto\:\dfrac{d}{dx}tanx =  {sec}^{2}x

\rm :\longmapsto\:\dfrac{d}{dx}cotx =   -  \: {cosec}^{2}x

Similar questions