tan theta + 1 by cos theta whole square + tan theta - 1 by cos theta whole square equals to 2 of 1 + sin square theta by 1 minus sin square theta
Answers
Given:
tan theta + 1 by cos theta whole square + tan theta - 1 by cos theta whole square equals to 2 of 1 + sin square theta by 1 minus sin square theta
To find:
tan theta + 1 by cos theta whole square + tan theta - 1 by cos theta whole square equals to 2 of 1 + sin square theta by 1 minus sin square theta
Solution:
From given, we have,
tan theta + 1 by cos theta whole square + tan theta - 1 by cos theta whole square equals to 2 of 1 + sin square theta by 1 minus sin square theta
⇒ (tanθ + 1/cosθ)² + (tanθ - 1/cosθ)² = 2 [(1+sin²θ)/(1-sin²θ)]
Now consider, LHS,
= (tanθ + 1/cosθ)² + (tanθ - 1/cosθ)²
= (sinθ/cosθ + 1/cosθ)² + (sinθ/cosθ - 1/cosθ)²
= (1+sinθ)²/(cosθ)² + (1-sinθ)²/(cosθ)²
= [(1+sinθ)² + (1-sinθ)²]/(cosθ)²
= [1+sin²θ+2sinθ+1+sin²θ-2sinθ ]/(cosθ)²
= (2+2sin²θ)/(cosθ)²
= 2(1+sin²θ)/cos²θ
= 2(1+sin²θ)/(1-sin²θ)
= 2 [(1+sin²θ)/(1-sin²θ)]
= RHS
Hence the proof.