Math, asked by saryka, 3 months ago

➟ Differentiate
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀​

Attachments:

Answers

Answered by mathdude500
89

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{ {2}^{x +1} \: . \: {3}^{x}   }{1 +  {(36)}^{x} } \bigg)

can be rewritten as

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{ {2}^{x} \times 2 \: . \: {3}^{x}   }{1 +  {(6 \times 6)}^{x} } \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  {a}^{x + y}  =  {a}^{x}  \times  {a}^{y} }}

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{ {(2 \times 3)}^{x} \times 2 }{1 +  {( {6}^{2} )}^{x} } \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  {(ab)}^{x}  =  {a}^{x}  \times  {b}^{x} }}

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{ {(6)}^{x} \times 2 }{1 +  {( {6}^{x})}^{2} } \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  {( {a}^{y} )}^{x}  =  {( {a}^{x} )}^{y}}}

\rm :\longmapsto\:y =  {sin}^{ - 1}\bigg(\dfrac{ 2 \times {(6)}^{x}}{1 +  {( {6}^{x})}^{2} } \bigg)

We know,

\green{\boxed{ \bf\:  {2tan}^{ - 1}x =  {sin}^{ - 1} \: \dfrac{2x}{1 +  {x}^{2} }  }}

Using this formula, we get

\rm :\longmapsto\:y = 2 \:  {tan}^{ - 1} ({6}^{x} )

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} \: 2 \:  {tan}^{ - 1} ({6}^{x} )

\rm :\longmapsto\:\dfrac{dy}{dx}= 2 \: \dfrac{d}{dx} \:  {tan}^{ - 1} ({6}^{x} )

 \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  \dfrac{d}{dx} \: k \: f(x) \:  =  \: k \: \dfrac{d}{dx} \: f(x)}}

\rm :\longmapsto\:\dfrac{dy}{dx}= 2 \: \times  \dfrac{1}{1 +  {( {6}^{x}) }^{2} }  \:  \dfrac{d}{dx} \: ({6}^{x} )

 \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  \dfrac{d}{dx} \:  {tan}^{ - 1}x  \:  =   \: \dfrac{1}{1 +  {x}^{2} }}}

\rm :\longmapsto\:\dfrac{dy}{dx}=   \dfrac{2}{1 +  {( {36}^{x}) }}  \:   {6}^{x}  \:  log(6)

 \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  \dfrac{d}{dx} \:  {a}^{ x}  \:  =   \:  {a}^{x}  \:  log(a) }}

Hence,

 \red{\bf :\longmapsto\:\dfrac{dy}{dx}=   \dfrac{2}{1 +  {( {36}^{x}) }}  \:   {6}^{x}  \:  log(6)}

Additional Information :-

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {sin}^{ - 1}x = \dfrac{1}{ \sqrt{1 -  {x}^{2} } }}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cos}^{ - 1}x = \dfrac{ -  \: 1}{ \sqrt{1 -  {x}^{2} } }}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {sec}^{ - 1}x = \dfrac{ \: 1}{ x\sqrt{{x}^{2} - 1 } }}

 \red{\rm :\longmapsto\:\dfrac{d}{dx} {cosec}^{ - 1}x = \dfrac{  - \: 1}{ x\sqrt{{x}^{2} - 1 } }}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}x = 1}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}k = 0}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}sinx = cosx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}cosx =  -  \: sinx}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}tanx =  \:  {sec}^{2} x}

 \red{\rm :\longmapsto\:\dfrac{d}{dx}cotx =  \:  { -  \: cosec}^{2} x}

Similar questions