Differentiate acos³x step by step.
don't write Fake solution
Right answer will be marked Brainliest and fake answer will be reported.
Answers
EXPLANATION.
Differentiation of acos³x.
As we know that,
In this type of question, first we differentiate power then constant term,
⇒ dy/dx = d(acos³x)/dx.
⇒ dy/dx = 3acos²x(-sinx).
⇒ dy/dx = -3acos²x(sin x).
MORE INFORMATION.
Differentiation by trigonometrical substitutions.
(1) = √a² - x²
Substitution x = a sin∅ or a cos∅.
(2) = √x² + a²
Substitution x = a tan∅ or a cot∅.
(3) = √x² - a²
Substitution x = a sec∅ or a cosec∅.
(4) = √a - x/a + x
Substitution x = a cos2∅.
(5) = √a² - x²/a² + x²
Substitution x² = a² cos 2∅.
(6) = √ax - x².
Substitution x = a sin²∅.
(7) = √x/a + x
Substitution x = atan²∅.
(8) = √x/a - x.
Substitution x = a sin²∅.
(9) = √(x - a)(x - b).
Substitution x = a sec²∅ - b tan²∅.
(10) = √(x - a)(b - x)
Substitution x = acos²∅ + b sin²∅.
Differentiate acos³x
dx/dy = a3cos²x(-sin x)
dx/dy = -3a cos²x(sin x)
_______________________
- d(e^x)/dx = e^x
- d(x^n)/dx = n x^(n-1)
- d(ln x)/dx = 1/x
- d(sin x)/dx = cos x
- d(cos x)/dx = - sin x
- d(tan x)/dx = sec² x
- d(sec x)/dx = tan x * sec x
- d(cot x)/dx = - cosec²x
- d(cosec x)/dx = - cosec x * cot x
_______________________
Trigonometry Table -
_______________________
Some important trigonometry identity -
- cosec²θ - cot²θ = 1
- cosec²θ = 1 + cot²θ
- 1 + cot²θ = cosec²θ
- sin²θ + cos²θ = 1
- sin²θ = 1 - cos²θ
- cos²θ = 1 - sin²θ
- sec²θ = 1 + tan²θ
- sec²θ - tan²θ = 1
_______________________