Math, asked by kkkkiiiiii, 4 months ago

If x−y = 15 and xy = 20, then find the value of 1/x^3 −1/y^3 .​

Answers

Answered by amitnrw
3

Given : x−y = 15 and xy = 20

To Find :  1/x³ - 1/y³

Solution:

x−y = 15

Squaring both sides

( x - y)² = 15²

=> x² + y² - 2xy  = 225

=> x² + y² - 2(20) = 225

=> x² + y² = 265

1/x³ - 1/y³

= (y³ - x³)/x³y³

= ( y - x) ( y² + x²  + xy)/(xy)³

y - x= -(x-y) = -15

y² + x² = 265

xy = 20

= (-15) (265 + 20)/(20)³

= - 15(285) /20³

=  - 4,275/8000

= -171/320

= -0.534375

Learn More:

Solve the following x+y/xy=5 and x-5/xy=7 - Brainly.in

https://brainly.in/question/8168066

(x,y)/y=x+3,x,y are natural numbers less than 10

https://brainly.in/question/9479557

Answered by pulakmath007
5

SOLUTION

GIVEN

x − y = 15 and xy = 20

TO DETERMINE

 \displaystyle \sf{ \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }  }

EVALUATION

Here it is given that

x − y = 15 and xy = 20

So

 \displaystyle \sf{  \frac{x - y}{xy}  =  \frac{15}{20}  }

 \displaystyle \sf{ \implies  \frac{1}{y}  -  \frac{1}{x}   =  \frac{3}{4} }

 \displaystyle \sf{ \implies  \frac{1}{x}  -  \frac{1}{y}   =  -  \frac{3}{4} }

Now cubing both sides we get

 \displaystyle \sf{ {\bigg(  \frac{1}{x}  -  \frac{1}{y}  \bigg)}^{3}   =  -  \frac{27}{64} }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }   - 3 \times  \frac{1}{x}  \times  \frac{1}{y}  {\bigg(  \frac{1}{x}  -  \frac{1}{y}  \bigg)}^{}   =  -  \frac{27}{64} }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }   -   \frac{3}{xy}   {\bigg(  \frac{1}{x}  -  \frac{1}{y}  \bigg)}^{}   =  -  \frac{27}{64} }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }    +  \frac{3}{20}   \times  \frac{3}{4} =  -  \frac{27}{64} }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }     =  -  \frac{27}{64}  -  \frac{9}{80} }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }     =  -  \frac{270 + 72}{640}  }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }     =  -  \frac{342}{640}  }

 \displaystyle \sf{ \implies \:  \frac{1}{ {x}^{3} } -  \frac{1}{ {y}^{3} }     =  -  \frac{171}{320}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Evaluate: 7 x 7^1/2 x 7^1/4 x 7^1/8

..to infinity

https://brainly.in/question/20308189

2. Let r be a positive number satisfying r^1/1234) + (r^-1/1234) = 2 ..then find (r^4321)+(r^-4321)??

https://brainly.in/question/22386838

Similar questions