Math, asked by Notmenow, 8 months ago

differentiate and intigrate √x​

Answers

Answered by Anonymous
1

Answer:

Step-by-step explanation:

differentiation of x^n=n.x^n-1

\sqrt{x}=x^1/2

dx^1/2/dx=1/2.x^-1/2

integration formula=x^n+1/n+1

n=1/2

x^1/2+1/3/2=x^3/2/3/2

Answered by diwanamrmznu
7

differentiate √x with respect

to x :-

formula use

 \implies \pink { \frac{d}{dx}x {}^{n}  = nx {}^{n - 1}  }

 \implies \:  \frac{d}{dx}  \sqrt{x} \\  \\  \implies \:  \frac{d}{dx}x {}^{ \frac{1}{2} }  \\  \\  \implies \:  \frac{1}{2} {x}^{ \frac{1}{2}  - 1}  \\  \\  \implies \:  \frac{1}{2}  x {}^{ -  \frac{1}{2} }  \\  \\  \implies \:  \frac{1}{2x {}^{ \frac{1}{2} } }   \\  \\  \implies \:  \frac{1}{2 \sqrt{x} }

intigration √x

formula use

 \implies  \int\pink{x {}^{n}dx =  \frac{x {}^{n + 1} }{n + 1}  } \\

 \implies \int \:  \sqrt{x} \:  dx \\  \\  \implies \int \: x {}^{ \frac{1}{2} } dx \\  \\  \implies \:  \frac{x {}^{ \frac{1}{2}  + 1} }{ \frac{1}{2} + 1 }  \\  \\  \implies \:  \frac{x {}^{ \frac{3}{2} } }{ \frac{3}{2} }  \\   \\  \implies \:  \frac{2}{3} x {}^{ \frac{3}{2} }

______________________

I hope it helps you

Similar questions