Math, asked by koushikreddy8121, 2 months ago

Differentiate cos{log(cot)}^7

with respect to X.​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{cos(log(cotx))^7}

\textbf{To find:}

\mathsf{Derivative\;of\;cos(log(cotx))^7}

\textbf{Solution:}

\textsf{We apply chain rule diffentiate the given function}

\mathsf{Let\;y=cos(log(cotx))^7}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;\dfrac{1}{cotx}(-cosec^2x)}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;tanx(-cosec^2x)}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;\dfrac{sinx}{cosx}\left(\dfrac{-1}{sin^2x}\right)}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;\left(\dfrac{-1}{cosx\;sinx}\right)}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{sin(log(cotx))^7\;7(log(cotx))^6}{cosx\;sinx}}}

\textbf{Find more:}

1.y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

4.If y= log tan(π/4+x/2),show that dy/dx=secx

https://brainly.in/question/5012403

5.Differentiate w. r. t.x.

(x^3-2x-1)^5

​https://brainly.in/question/16682392

Answered by mahek77777
1

\textbf{Given:}

\mathsf{cos(log(cotx))^7}

\textbf{To find:}

\mathsf{Derivative\;of\;cos(log(cotx))^7}

\textbf\red{Solution:}

\textsf{We apply chain rule diffentiate the given function}

\mathsf{Let\;y=cos(log(cotx))^7}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;\dfrac{1}{cotx}(-cosec^2x)}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;tanx(-cosec^2x)}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;\dfrac{sinx}{cosx}\left(\dfrac{-1}{sin^2x}\right)}

\mathsf{\dfrac{dy}{dx}=-sin(log(cotx))^7\;7(log(cotx))^6\;\left(\dfrac{-1}{cosx\;sinx}\right)}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{sin(log(cotx))^7\;7(log(cotx))^6}{cosx\;sinx}}}

Similar questions