Differentiate cot inverse (1-√x)/(1+√x)
Answers
Answered by
0
Answer:
pi/4 - tan^-1 (x)
Step-by-step explanation:
cot^-1[(1+x)/(1-x)].
=tan^-1[(1-x)/(1+x)].
put x= tanA
=tan^-1 (1-tanA)/(1+tanA).
=tan^-1 [(tan pi/4 - tan A)/(1+tan pi/4.tan A)].
= tan^-1 tan (pi/4-A)).
= pi/4 -A. , putting A=tan^-1(x).
= pi/4 - tan^-1 (x)
Ans :- pi/4 - tan^-1 (x)
Similar questions