Math, asked by khushijain00451, 2 months ago

differentiate e^2cosx​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {e}^{2cosx}

Let assume that

\rm :\longmapsto\: y = {e}^{2cosx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}y = \dfrac{d}{dx}{e}^{2cosx}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {e}^{x} =  {e}^{x} \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = {e}^{2cosx}\dfrac{d}{dx}(2cosx)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \: f(x) \:  =  \: k\dfrac{d}{dx} \: f(x) \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = {e}^{2cosx} \times 2\dfrac{d}{dx}(cosx)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}cosx =  -  \: sinx \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2{e}^{2cosx}( - sinx)

\bf\implies \:\boxed{ \bf{ \: \dfrac{dy}{dx} =  -  \: 2 \: sinx \: {e}^{2cosx}}}

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitsmrseenuxX
18

Answer:

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {e}^{2cosx}

Let assume that

\rm :\longmapsto\: y = {e}^{2cosx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}y = \dfrac{d}{dx}{e}^{2cosx}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {e}^{x} =  {e}^{x} \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = {e}^{2cosx}\dfrac{d}{dx}(2cosx)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}k \: f(x) \:  =  \: k\dfrac{d}{dx} \: f(x) \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = {e}^{2cosx} \times 2\dfrac{d}{dx}(cosx)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}cosx =  -  \: sinx \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2{e}^{2cosx}( - sinx)

\bf\implies \:\boxed{ \bf{ \: \dfrac{dy}{dx} =  -  \: 2 \: sinx \: {e}^{2cosx}}}

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions