Math, asked by manideep333, 1 year ago

Differentiate e3x sin x with respect to x​

Answers

Answered by richapariya121pe22ey
3

Step-by-step explanation:

 y = {e}^{3x}  \times  \sin(x)  \\  \frac{dy}{dx}  =  \frac{d}{dx} ( {e}^{3x}  \times  \sin(x) ) \\  =   {e}^{3x}  \frac{d}{dx}  \sin(x)   +  \sin(x)  \frac{d}{dx}   {e}^{3x}  \\  =  ({e}^{3x}  \times  \cos(x))  +  (\sin(x)  \times  {e}^{3x}  \times  \frac{d}{dx} 3x) \\  = ( {e}^{3x}  \times   \cos(x)  ) + ( \sin(x)  \times  {e}^{3x}  \times 3 \frac{d}{dx} x) \\  = ( {e}^{3x}  \times   \cos(x)  ) + ( \sin(x)  \times  {e}^{3x}  \times 3  \times 1) \\  = ( {e}^{3x}  \times   \cos(x)  ) + ( \sin(x)  \times  {e}^{3x}  \times 3 ) \\  =  {e}^{3x} ( \cos(x)  + 3 \sin(x) )


manideep333: thank you so much
avni6279: please answer my question
avni6279: please
avni6279: hep5
avni6279: *help
Similar questions