Math, asked by Swaza1226, 1 month ago

Differentiate log (1 + x) w.r.t. sin-1x.

Answers

Answered by shadowsabers03
7

Let,

\small\text{$\longrightarrow u=\log(1+x)$}

\small\text{$\longrightarrow\dfrac{du}{dx}=\dfrac{d}{dx}[\log(1+x)]$}

\small\text{$\longrightarrow\dfrac{du}{dx}=\dfrac{\dfrac{d}{dx}[1+x]}{1+x}$}

\small\text{$\longrightarrow\dfrac{du}{dx}=\dfrac{1}{1+x}\quad\dots(1)$}

and,

\small\text{$\longrightarrow v=\sin^{-1}x$}

\small\text{$\longrightarrow\dfrac{dv}{dx}=\dfrac{d}{dx}[\sin^{-1}x]$}

\small\text{$\longrightarrow\dfrac{dv}{dx}=\dfrac{1}{\sqrt{1-x^2}}\quad\dots(2)$}

We need to find \small\text{$\dfrac{du}{dv}.$}

Dividing numerator and denominator of \small\text{$\dfrac{du}{dv}$} by dx we get,

\small\text{$\longrightarrow\dfrac{du}{dv}=\dfrac{\left(\dfrac{du}{dx}\right)}{\left(\dfrac{dv}{dx}\right)}$}

From (1) and (2),

\small\text{$\longrightarrow\dfrac{du}{dv}=\dfrac{\left(\dfrac{1}{1+x}\right)}{\left(\dfrac{1}{\sqrt{1-x^2}}\right)}$}

\small\text{$\longrightarrow\dfrac{du}{dv}=\dfrac{\sqrt{1-x^2}}{1+x}$}

\small\text{$\longrightarrow\dfrac{du}{dv}=\dfrac{\sqrt{(1-x)(1+x)}}{1+x}$}

\small\text{$\longrightarrow\dfrac{du}{dv}=\dfrac{\sqrt{1-x}\cdot\sqrt{1+x}}{1+x}$}

\small\text{$\longrightarrow\dfrac{du}{dv}=\dfrac{\sqrt{1-x}}{\sqrt{1+x}}$}

\small\text{$\longrightarrow\underline{\underline{\dfrac{du}{dv}=\sqrt{\dfrac{1-x}{1+x}}}}$}

Answered by CoruscatingGarçon
1

Answer:

The derivative is √[(1-x)/(1+x)]

HOPE IT HELPS!!

#BE BRAINLY

Similar questions