Math, asked by sauravpratap2006, 1 year ago

differentiate of Sin inverse under root x​

Answers

Answered by Anonymous
35

Step-by-step explanation:

here, let us consider the function is

y =  { \sin }^{ - 1}  \sqrt{x}

Differentiation wrt x :

 \frac{dy}{dx}  =  \frac{d}{dx} ( { \sin}^{ - 1}  \sqrt{x} )

here remember that if the function is sin^(-1) f(x) then their derivative is( 1 / √[1 - (f (x))²]) x f'(x)

 =  \frac{1}{ \sqrt{1 -  ({ \sqrt{x}) }^{2} } }  \times  \frac{d}{dx} ( \sqrt{x} )

 =  \frac{1}{ \sqrt{1 - x} }  \times  \frac{1}{2 \sqrt{x} }

 =   \frac{1}{2 \sqrt{x}( \sqrt{1 - x} ) }

  \frac{dy}{dx} =   \frac{1}{2 \sqrt{x}( \sqrt{1 - x} ) }

Similar questions