Math, asked by PragyaTbia, 1 year ago

Differentiate (\cos x)^{\sin x} w. r. t. (\sin x)^{\cos x}

Answers

Answered by abhishek111109
0
very good questions.
Attachments:
Answered by MaheswariS
0

Answer:

\text{Consider }

y=u^v

\text{Take logarithm on both sides}

logy=log\,u^v

logy=v\,log\,u

\text{Differrentiate with respect to x}

\frac{1}{y}\frac{dy}{dx}=v(\frac{1}{u})\frac{du}{dx}+log\,u\:\frac{dv}{dx}

\frac{dy}{dx}=y[\frac{v}{u}\frac{du}{dx}+log\,u\:\frac{dv}{dx}]

\implies\:\boxed{\frac{d(u^v)}{dx}=u^v[\frac{v}{u}\frac{du}{dx}+log\,u\:\frac{dv}{dx}]}..........(1)

Using (1)

\frac{d((cosx)^{sinx})}{dx}=(cosx)^{sinx}[\frac{sinx}{cosx}\:\frac{d(cosx)}{dx}+log(cosx)\:\frac{d(sinx)}{dx}]

\frac{d((cosx)^{sinx})}{dx}=(cosx)^{sinx}[tanx\,(-sinx)+log(cosx)\,cosx]

\frac{d((cosx)^{sinx})}{dx}=(cosx)^{sinx}[-tanx\,sinx+cosx\,log(cosx)]

Using (1)

\frac{d((sinx)^{cosx})}{dx}=(sinx)^{cosx}[\frac{cosx}{sinx}\frac{d(sinx)}{dx}+log\,(sinx)\:\frac{d(cosx)}{dx}]

\frac{d((sinx)^{cosx})}{dx}=(sinx)^{cosx}[cotx\,(cosx)+log\,(sinx)\:(-sinx)]

\implies\:\frac{d((sinx)^{cosx})}{dx}=(sinx)^{cosx}[cotx\,cosx-sinx\,log\,(sinx)]

\text{Now }

\displaystyle\frac{d((cosx)^{sinx})}{d((cosx)^{sinx})}

=\displaystyle\frac{\frac{d((cosx)^{sinx})}{dx}}{\frac{d((cosx)^{sinx})}{dx}}

=\displaystyle\frac{(cosx)^{sinx}[-tanx\,sinx+cosx\,log(cosx)]}{(sinx)^{cosx}[cotx\,cosx-sinx\,log\,(sinx)]}

Similar questions