Math, asked by khushi15686, 11 hours ago

Differentiate the following function with respect to x

 {e}^{ {x}^{ {e}^{x} } }

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {e}^{ {x}^{ {e}^{x} } }  -  -  - (1)

Taking log on both sides, we get

\rm :\longmapsto\:logy =  log{e}^{ {x}^{ {e}^{x} } }

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx \: }}}

So, using this, we get

\rm :\longmapsto\:logy =  {x}^{ {e}^{x} } loge

\rm :\longmapsto\:logy =  {x}^{ {e}^{x} }  \:  \:  \:  \{ \because \: loge = 1 \} -  -  - (2)

Taking log on both sides, we get

\rm :\longmapsto\:log(logy) = log {x}^{ {e}^{x} }

\rm :\longmapsto\:log(logy) =  {e}^{x} \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} log(logy) = \dfrac{d}{dx} \bigg[ {e}^{x} \: logx \: \bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} logx =  \frac{1}{x}}}}

and

\red{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} uv = u\dfrac{d}{dx} v \:  +  \: v\dfrac{d}{dx} u}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{logy}\dfrac{d}{dx} logy = logx\dfrac{d}{dx} {e}^{x} + {e}^{x}\dfrac{d}{dx} logx

\rm :\longmapsto\:\dfrac{1}{ylogy}\dfrac{dy}{dx} = logx \times {e}^{x} + {e}^{x} \times \dfrac{1}{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = y \: logy \: \bigg[{e}^{x}logx + \dfrac{{e}^{x}}{x}\bigg]

On substituting the values of y and logy from equation (1) and (2), we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {x}^{ {e}^{x} }\:{e}^{ {x}^{ {e}^{x} } }  \: \bigg[{e}^{x}logx + \dfrac{{e}^{x}}{x}\bigg]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Diliptalapda
0

Step-by-step explanation:

 \mathtt \purple{{e}^{ {x}^{ {e}^{x} } }}

Similar questions