Math, asked by ayush0088, 1 month ago

differentiate the following question.

Attachments:

Answers

Answered by Anonymous
3

x√y + y√8 = 1

Differentiating on both sides with respect to x

  \implies \dfrac{d}{dx} (x \sqrt{y}  + y \sqrt{8} ) =  \dfrac{d}{dx} (1)

Using sum rule d( u + v ) / dx = du/dx + dv/dx and constant rule d( k) / dx = 0

  \implies \dfrac{d}{dx} (x \sqrt{y}  )+ \dfrac{d}{dx} ( y \sqrt{8} ) =  0

Using product rule d(uv)/ dx = u × dv/dx + v × du/dx

\implies x.\dfrac{d}{dx} (\sqrt{y}  ) +  \sqrt{y} . \dfrac{d}{dx}(x) + \dfrac{d}{dx} ( y \sqrt{8} ) =  0

Using chain rule d/dx { f( g(x) ) } = f'( g(x) ) × g'( x) and Power rule d/dx ( x^n ) = nx^( n - 1 )

\implies x \bigg( \dfrac{1}{2 \sqrt{y} }  \bigg) \dfrac{dy}{dx}  +  \sqrt{y} .1 {x}^{1 - 1}  + \dfrac{d}{dx} ( y \sqrt{8} ) =  0

\implies   \bigg(\dfrac{x}{2 \sqrt{y} }    + \sqrt{8} \bigg) \dfrac{dy}{dx} =   -  \sqrt{y}

\implies  \boxed{\dfrac{dy}{dx} =    -  \dfrac{2y}{x + 2 \sqrt{8y} } }

Similar questions