Math, asked by PragyaTbia, 1 year ago

Differentiate the function w.r.t.x:
\rm \frac{x^{2}-\cos x}{\sin x}

Answers

Answered by hukam0685
0
We know that such form of expression can solve by U/V method of differentiation

 \frac{d}{dx} \bigg(\frac{U}{V}\bigg ) = \frac{V \frac{dU}{dx} - U \frac{dV}{dx} }{ {V}^{2} } \\ \\ here \: U = x^{2}-cos\:x \\ \\ V = sin\:x \\\\

\frac{d}{dx} \bigg(\frac{ {x}^{2}  - cos \: x}{sin \: x}\bigg ) = \frac{sin \: x \frac{d( {x}^{2} - cos \: x) }{dx} -  ({x}^{2} - cos \: x) \frac{d \: sin \: x}{dx} }{ {(sin \: x})^{2} } \\ \\  = \frac{sin \: x (2x + sin \:x)-  cos \: x({x}^{2} - cos \: x) }{  {sin}^{2}x } \\ \\  =  \frac{2x \: sin \: x +  {sin}^{2}x -  {x}^{2} cos \: x +  {cos}^{2}x  }{ {sin}^{2}x }  \\  \\ \frac{d}{dx} \bigg(\frac{ {x}^{2}  - cos \: x}{sin \: x}\bigg )  =  \frac{2x \: sin \: x -  {x}^{2} cos \: x + 1}{ {sin}^{2x} }  \\  \\
Hope it helps you.
Similar questions